Qiwei Hu, Ji Chen, Leiming Fang, Xiping Chen, Lei Xie, L. Lei, Chaowen Xu, Guangai Sun, Bo Chen, D. He
{"title":"用中子衍射和拉曼散射研究NaCl在高压水中的溶解行为","authors":"Qiwei Hu, Ji Chen, Leiming Fang, Xiping Chen, Lei Xie, L. Lei, Chaowen Xu, Guangai Sun, Bo Chen, D. He","doi":"10.1080/08957959.2020.1863962","DOIUrl":null,"url":null,"abstract":"ABSTRACT The solubility of NaCl in water is one of the most important thermo-physical properties. However, the solubility behavior of NaCl in water is poorly understood at high pressure and low temperature. Herein, we performed high pressure neutron diffraction and Raman scattering to investigate the solubility of NaCl in water and the corresponding structural change, respectively. With the pressure increasing, the solubility almost increases linearly below 0.2 GPa, beyond which it starts to level off and reaches its maximum at about 0.61 GPa. The Raman spectra suggested that the deformation of the hydrogen-bonded network in the NaCl aqueous solution promotes the formation of ions pairing and is responsible for the solubility increase of NaCl in water. Finally, we used a two-dimensional Mercedes-Benz model to descript the picture of solubility behavior of NaCl in water at high pressure.","PeriodicalId":12864,"journal":{"name":"High Pressure Research","volume":"41 1","pages":"39 - 51"},"PeriodicalIF":1.2000,"publicationDate":"2021-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/08957959.2020.1863962","citationCount":"1","resultStr":"{\"title\":\"The solubility behavior of NaCl in water at high pressure studied by neutron diffraction and Raman scattering\",\"authors\":\"Qiwei Hu, Ji Chen, Leiming Fang, Xiping Chen, Lei Xie, L. Lei, Chaowen Xu, Guangai Sun, Bo Chen, D. He\",\"doi\":\"10.1080/08957959.2020.1863962\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The solubility of NaCl in water is one of the most important thermo-physical properties. However, the solubility behavior of NaCl in water is poorly understood at high pressure and low temperature. Herein, we performed high pressure neutron diffraction and Raman scattering to investigate the solubility of NaCl in water and the corresponding structural change, respectively. With the pressure increasing, the solubility almost increases linearly below 0.2 GPa, beyond which it starts to level off and reaches its maximum at about 0.61 GPa. The Raman spectra suggested that the deformation of the hydrogen-bonded network in the NaCl aqueous solution promotes the formation of ions pairing and is responsible for the solubility increase of NaCl in water. Finally, we used a two-dimensional Mercedes-Benz model to descript the picture of solubility behavior of NaCl in water at high pressure.\",\"PeriodicalId\":12864,\"journal\":{\"name\":\"High Pressure Research\",\"volume\":\"41 1\",\"pages\":\"39 - 51\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/08957959.2020.1863962\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Pressure Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/08957959.2020.1863962\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Pressure Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/08957959.2020.1863962","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The solubility behavior of NaCl in water at high pressure studied by neutron diffraction and Raman scattering
ABSTRACT The solubility of NaCl in water is one of the most important thermo-physical properties. However, the solubility behavior of NaCl in water is poorly understood at high pressure and low temperature. Herein, we performed high pressure neutron diffraction and Raman scattering to investigate the solubility of NaCl in water and the corresponding structural change, respectively. With the pressure increasing, the solubility almost increases linearly below 0.2 GPa, beyond which it starts to level off and reaches its maximum at about 0.61 GPa. The Raman spectra suggested that the deformation of the hydrogen-bonded network in the NaCl aqueous solution promotes the formation of ions pairing and is responsible for the solubility increase of NaCl in water. Finally, we used a two-dimensional Mercedes-Benz model to descript the picture of solubility behavior of NaCl in water at high pressure.
期刊介绍:
High Pressure Research is the leading journal for research in high pressure science and technology. The journal publishes original full-length papers and short research reports of new developments, as well as timely review articles. It provides an important forum for the presentation of experimental and theoretical advances in high pressure science in subjects such as:
condensed matter physics and chemistry
geophysics and planetary physics
synthesis of new materials
chemical kinetics under high pressure
industrial applications
shockwaves in condensed matter
instrumentation and techniques
the application of pressure to food / biomaterials
Theoretical papers of exceptionally high quality are also accepted.