倾斜煤层采空留巷主顶板断裂演化

IF 1.9 4区 工程技术 Q4 ENERGY & FUELS Energy Exploration & Exploitation Pub Date : 2023-04-25 DOI:10.1177/01445987231171409
Jinzhu Hu, Zimin Ma, Pengfei Guo, Yunjin Hu
{"title":"倾斜煤层采空留巷主顶板断裂演化","authors":"Jinzhu Hu, Zimin Ma, Pengfei Guo, Yunjin Hu","doi":"10.1177/01445987231171409","DOIUrl":null,"url":null,"abstract":"During the application of gob-side entry retaining by roof cutting in inclined coal seams, the boundary conditions of the main roof in the goaf will change, resulting in the special characteristics of its fracture evolution. This article established a main roof elastic mechanics model through theoretical analysis and obtained the stress expression of any point on the main roof, analyzed the stress distribution characteristics and fracture evolution law of the main roof, finally, and revealed the unloading mechanism of the overburden in the cutting roof of goaf by combining with field mining pressure data. The results show that the stress value on the main roof is related to the dip angle, the poison's ratio, and the geometry parameters of the working face. The main roof stress presented an asymmetric distribution in the inclined direction. The fracture mode of the main roof is the “U-Y” mode under the first weighting and the “L-Y” mode under periodic breakage. The pressure on the upper part of the working face increased, while the lower part decreased according to field mining pressure data. There are two reasons for the reduction of pressure in the lower part of the working face, on the one hand, the reduction of the area of the key block A leads to a decrease in load, on the other hand, the gangue filling and supporting effect of the lower part of the goaf. The surrounding rock of the gob-side entry is not obviously affected by the dynamic pressure, and the deformation is small, achieving a good retaining effect.","PeriodicalId":11606,"journal":{"name":"Energy Exploration & Exploitation","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fracture evolution of the main roof in gob-side entry retaining by roof cutting of an inclined coal seam\",\"authors\":\"Jinzhu Hu, Zimin Ma, Pengfei Guo, Yunjin Hu\",\"doi\":\"10.1177/01445987231171409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the application of gob-side entry retaining by roof cutting in inclined coal seams, the boundary conditions of the main roof in the goaf will change, resulting in the special characteristics of its fracture evolution. This article established a main roof elastic mechanics model through theoretical analysis and obtained the stress expression of any point on the main roof, analyzed the stress distribution characteristics and fracture evolution law of the main roof, finally, and revealed the unloading mechanism of the overburden in the cutting roof of goaf by combining with field mining pressure data. The results show that the stress value on the main roof is related to the dip angle, the poison's ratio, and the geometry parameters of the working face. The main roof stress presented an asymmetric distribution in the inclined direction. The fracture mode of the main roof is the “U-Y” mode under the first weighting and the “L-Y” mode under periodic breakage. The pressure on the upper part of the working face increased, while the lower part decreased according to field mining pressure data. There are two reasons for the reduction of pressure in the lower part of the working face, on the one hand, the reduction of the area of the key block A leads to a decrease in load, on the other hand, the gangue filling and supporting effect of the lower part of the goaf. The surrounding rock of the gob-side entry is not obviously affected by the dynamic pressure, and the deformation is small, achieving a good retaining effect.\",\"PeriodicalId\":11606,\"journal\":{\"name\":\"Energy Exploration & Exploitation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Exploration & Exploitation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/01445987231171409\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Exploration & Exploitation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/01445987231171409","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

在倾斜煤层采空区采空区留巷应用过程中,采空区主顶板的边界条件会发生变化,导致其裂隙演化具有特殊性。本文通过理论分析建立了主顶板弹性力学模型,得到了主顶板任意点的应力表达式,分析了主顶板的应力分布特征和裂缝演化规律,并结合现场开采压力数据揭示了采空区路堑顶板覆盖层的卸荷机理。结果表明,主顶板的应力值与工作面的倾角、毒比和几何参数有关。顶板主应力在倾斜方向上呈不对称分布。主顶板的断裂模式为首次加重时的“U-Y”模式和周期性破坏时的“L-Y”模式。根据现场开采压力数据,工作面上部的压力增加,而下部的压力降低。工作面下部压力降低的原因有两个,一方面是关键块A面积的减小导致负荷降低,另一方面是采空区下部的脉石充填和支护作用。采空区巷道围岩受动压影响不明显,变形较小,达到了良好的支护效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fracture evolution of the main roof in gob-side entry retaining by roof cutting of an inclined coal seam
During the application of gob-side entry retaining by roof cutting in inclined coal seams, the boundary conditions of the main roof in the goaf will change, resulting in the special characteristics of its fracture evolution. This article established a main roof elastic mechanics model through theoretical analysis and obtained the stress expression of any point on the main roof, analyzed the stress distribution characteristics and fracture evolution law of the main roof, finally, and revealed the unloading mechanism of the overburden in the cutting roof of goaf by combining with field mining pressure data. The results show that the stress value on the main roof is related to the dip angle, the poison's ratio, and the geometry parameters of the working face. The main roof stress presented an asymmetric distribution in the inclined direction. The fracture mode of the main roof is the “U-Y” mode under the first weighting and the “L-Y” mode under periodic breakage. The pressure on the upper part of the working face increased, while the lower part decreased according to field mining pressure data. There are two reasons for the reduction of pressure in the lower part of the working face, on the one hand, the reduction of the area of the key block A leads to a decrease in load, on the other hand, the gangue filling and supporting effect of the lower part of the goaf. The surrounding rock of the gob-side entry is not obviously affected by the dynamic pressure, and the deformation is small, achieving a good retaining effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy Exploration & Exploitation
Energy Exploration & Exploitation 工程技术-能源与燃料
CiteScore
5.40
自引率
3.70%
发文量
78
审稿时长
3.9 months
期刊介绍: Energy Exploration & Exploitation is a peer-reviewed, open access journal that provides up-to-date, informative reviews and original articles on important issues in the exploration, exploitation, use and economics of the world’s energy resources.
期刊最新文献
Sustainable energy recovery from municipal solid wastes: An in-depth analysis of waste-to-energy technologies and their environmental implications in India Discussion on the production mechanism of deep coalbed methane in the eastern margin of the Ordos Basin Assessing the diffusion of photovoltaic technology and electric vehicles using system dynamics modeling Trihybrid nanofluid flow through nozzle of a rocket engine: Numerical solution and irreversibility analysis An advanced hybrid deep learning model for accurate energy load prediction in smart building
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1