拉脱维亚短期通货膨胀预测模型及其评估

IF 1.2 3区 经济学 Q3 ECONOMICS Baltic Journal of Economics Pub Date : 2021-07-03 DOI:10.1080/1406099X.2021.2003997
Andrejs Bessonovs, O. Krasnopjorovs
{"title":"拉脱维亚短期通货膨胀预测模型及其评估","authors":"Andrejs Bessonovs, O. Krasnopjorovs","doi":"10.1080/1406099X.2021.2003997","DOIUrl":null,"url":null,"abstract":"ABSTRACT This paper builds a short-term inflation projections (STIP) model for Latvia. The model is designed to forecast highly disaggregated consumer prices using cointegrated ARDL approach of [Pesaran, M., & Shin, Y. (1998). An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. Econometric Society Monographs, 31, 371–413.]. We assess the forecast accuracy of STIP model using out-of-sample forecast exercise and show that our model outperforms both aggregated and disaggregated AR(1) benchmarks. Across inflation components, the forecast accuracy gains are 20–30% forecasting 3 months ahead and 15–55% forecasting 12 months ahead.","PeriodicalId":43756,"journal":{"name":"Baltic Journal of Economics","volume":"21 1","pages":"184 - 204"},"PeriodicalIF":1.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term inflation projections model and its assessment in Latvia\",\"authors\":\"Andrejs Bessonovs, O. Krasnopjorovs\",\"doi\":\"10.1080/1406099X.2021.2003997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This paper builds a short-term inflation projections (STIP) model for Latvia. The model is designed to forecast highly disaggregated consumer prices using cointegrated ARDL approach of [Pesaran, M., & Shin, Y. (1998). An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. Econometric Society Monographs, 31, 371–413.]. We assess the forecast accuracy of STIP model using out-of-sample forecast exercise and show that our model outperforms both aggregated and disaggregated AR(1) benchmarks. Across inflation components, the forecast accuracy gains are 20–30% forecasting 3 months ahead and 15–55% forecasting 12 months ahead.\",\"PeriodicalId\":43756,\"journal\":{\"name\":\"Baltic Journal of Economics\",\"volume\":\"21 1\",\"pages\":\"184 - 204\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baltic Journal of Economics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/1406099X.2021.2003997\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/1406099X.2021.2003997","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文建立了拉脱维亚的短期通货膨胀预测(STIP)模型。该模型旨在使用Pesaran, M., & Shin, Y.(1998)的协整ARDL方法预测高度分解的消费者价格。协整分析的自回归分布滞后建模方法。计量经济学会专论,31,371-413。我们使用样本外预测练习评估了STIP模型的预测准确性,并表明我们的模型优于聚合和分解AR(1)基准。在通货膨胀因素中,预测3个月的准确性提高了20-30%,预测12个月的准确性提高了15-55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Short-term inflation projections model and its assessment in Latvia
ABSTRACT This paper builds a short-term inflation projections (STIP) model for Latvia. The model is designed to forecast highly disaggregated consumer prices using cointegrated ARDL approach of [Pesaran, M., & Shin, Y. (1998). An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis. Econometric Society Monographs, 31, 371–413.]. We assess the forecast accuracy of STIP model using out-of-sample forecast exercise and show that our model outperforms both aggregated and disaggregated AR(1) benchmarks. Across inflation components, the forecast accuracy gains are 20–30% forecasting 3 months ahead and 15–55% forecasting 12 months ahead.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
7
审稿时长
30 weeks
期刊最新文献
Economic upgrading of Central and Eastern European economies through global value chain participation and foreign direct investment Are Poles stuck in overeducation? Individual dynamics of educational mismatch in Poland Choosing the European fiscal rule A long-run perspective on Latvian regional gross domestic product inequality, 1925–2016 The communication reaction function of the European Central Bank. An analysis using topic modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1