{"title":"应用于电力系统恒温负荷控制的半线性偏微分方程的完全倒向表示","authors":"Lucas Izydorczyk, N. Oudjane, F. Russo","doi":"10.1515/mcma-2021-2095","DOIUrl":null,"url":null,"abstract":"Abstract We propose a fully backward representation of semilinear PDEs with application to stochastic control. Based on this, we develop a fully backward Monte-Carlo scheme allowing to generate the regression grid, backwardly in time, as the value function is computed. This offers two key advantages in terms of computational efficiency and memory. First, the grid is generated adaptively in the areas of interest, and second, there is no need to store the entire grid. The performances of this technique are compared in simulations to the traditional Monte-Carlo forward-backward approach on a control problem of thermostatic loads.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":"27 1","pages":"347 - 371"},"PeriodicalIF":0.8000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A fully backward representation of semilinear PDEs applied to the control of thermostatic loads in power systems\",\"authors\":\"Lucas Izydorczyk, N. Oudjane, F. Russo\",\"doi\":\"10.1515/mcma-2021-2095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a fully backward representation of semilinear PDEs with application to stochastic control. Based on this, we develop a fully backward Monte-Carlo scheme allowing to generate the regression grid, backwardly in time, as the value function is computed. This offers two key advantages in terms of computational efficiency and memory. First, the grid is generated adaptively in the areas of interest, and second, there is no need to store the entire grid. The performances of this technique are compared in simulations to the traditional Monte-Carlo forward-backward approach on a control problem of thermostatic loads.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\"27 1\",\"pages\":\"347 - 371\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2021-2095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2021-2095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
A fully backward representation of semilinear PDEs applied to the control of thermostatic loads in power systems
Abstract We propose a fully backward representation of semilinear PDEs with application to stochastic control. Based on this, we develop a fully backward Monte-Carlo scheme allowing to generate the regression grid, backwardly in time, as the value function is computed. This offers two key advantages in terms of computational efficiency and memory. First, the grid is generated adaptively in the areas of interest, and second, there is no need to store the entire grid. The performances of this technique are compared in simulations to the traditional Monte-Carlo forward-backward approach on a control problem of thermostatic loads.