Anatoly P. Denisyuk, Zar N. Aung, Vladimir A. Sizov, Larisa A. Demidova, Alexey O. Merkushkin
{"title":"燃烧速率催化剂对三硝基间苯二酚燃烧波参数的影响","authors":"Anatoly P. Denisyuk, Zar N. Aung, Vladimir A. Sizov, Larisa A. Demidova, Alexey O. Merkushkin","doi":"10.1002/kin.21649","DOIUrl":null,"url":null,"abstract":"<p>The effect of burning rate catalyst—3% nickel salicylate (NS) with 1% carbon nanotubes (CNT)—on the combustion wave parameters of trinitroresorcinol (TNR) at 2 MPa as well as on the structure and elemental composition of the carbon frame on the surface of quenched TNR samples at 2 and 15 MPa were studied. The catalyst itself increases the burning rate by ∼4.3 times. It is shown that for the sample with NS and CNT, the accumulation of nickel particles formed during the decomposition of the catalyst occurred (∼110 times) at 2 MPa on the carbon frame. The degree of catalyst particles accumulation at 15 MPa is ∼60 times lower than at 2 MPa, so the burning rate increases by only 1.3 times. At 2 MPa the catalyst significantly (by ∼68 K) increases the combustion surface temperature, by ∼2.7 times increases the temperature gradient in the carbon frame zone, and reduces the length of the primary (fizz zone) and secondary flames. As a result, the heat release rate on the frame is 13.5 times higher than on the carbon frame of the sample without a catalyst. For TNR samples the thermal conductivity coefficient, based on the characteristics of the framework obtained, was calculated, and it was shown that the thermal conductivity coefficient of the carbon frame for a sample with NS and CNT is significantly (∼8 times) higher than for a sample without a catalyst. From the calculation of the heat balance of the c-phase at 2 MPa it follows that the combustion leading zone of the sample with a catalyst is the carbon frame, from which ∼98% of the necessary for combustion propagation heat enters the c-phase; for a sample without a catalyst, the heat gain from the gas zone is ∼20%; the leading zone is the reaction layer of the condensed phase. Thus, the mechanism of combustion catalysis of aromatic nitro compounds is the same as for double-base propellants. Two conditions are necessary for combustion catalysis: the formation of a carbon frame on the combustion surface, on which catalyst particles accumulate, and the carbon frame thermal conductivity coefficient must be significantly higher than that of the gas zone above combustion surface of the sample without a catalyst.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"55 8","pages":"467-478"},"PeriodicalIF":1.5000,"publicationDate":"2023-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Burning rate catalysts action on the trinitroresorcinol combustion wave parameters\",\"authors\":\"Anatoly P. Denisyuk, Zar N. Aung, Vladimir A. Sizov, Larisa A. Demidova, Alexey O. Merkushkin\",\"doi\":\"10.1002/kin.21649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The effect of burning rate catalyst—3% nickel salicylate (NS) with 1% carbon nanotubes (CNT)—on the combustion wave parameters of trinitroresorcinol (TNR) at 2 MPa as well as on the structure and elemental composition of the carbon frame on the surface of quenched TNR samples at 2 and 15 MPa were studied. The catalyst itself increases the burning rate by ∼4.3 times. It is shown that for the sample with NS and CNT, the accumulation of nickel particles formed during the decomposition of the catalyst occurred (∼110 times) at 2 MPa on the carbon frame. The degree of catalyst particles accumulation at 15 MPa is ∼60 times lower than at 2 MPa, so the burning rate increases by only 1.3 times. At 2 MPa the catalyst significantly (by ∼68 K) increases the combustion surface temperature, by ∼2.7 times increases the temperature gradient in the carbon frame zone, and reduces the length of the primary (fizz zone) and secondary flames. As a result, the heat release rate on the frame is 13.5 times higher than on the carbon frame of the sample without a catalyst. For TNR samples the thermal conductivity coefficient, based on the characteristics of the framework obtained, was calculated, and it was shown that the thermal conductivity coefficient of the carbon frame for a sample with NS and CNT is significantly (∼8 times) higher than for a sample without a catalyst. From the calculation of the heat balance of the c-phase at 2 MPa it follows that the combustion leading zone of the sample with a catalyst is the carbon frame, from which ∼98% of the necessary for combustion propagation heat enters the c-phase; for a sample without a catalyst, the heat gain from the gas zone is ∼20%; the leading zone is the reaction layer of the condensed phase. Thus, the mechanism of combustion catalysis of aromatic nitro compounds is the same as for double-base propellants. Two conditions are necessary for combustion catalysis: the formation of a carbon frame on the combustion surface, on which catalyst particles accumulate, and the carbon frame thermal conductivity coefficient must be significantly higher than that of the gas zone above combustion surface of the sample without a catalyst.</p>\",\"PeriodicalId\":13894,\"journal\":{\"name\":\"International Journal of Chemical Kinetics\",\"volume\":\"55 8\",\"pages\":\"467-478\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Chemical Kinetics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/kin.21649\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21649","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Burning rate catalysts action on the trinitroresorcinol combustion wave parameters
The effect of burning rate catalyst—3% nickel salicylate (NS) with 1% carbon nanotubes (CNT)—on the combustion wave parameters of trinitroresorcinol (TNR) at 2 MPa as well as on the structure and elemental composition of the carbon frame on the surface of quenched TNR samples at 2 and 15 MPa were studied. The catalyst itself increases the burning rate by ∼4.3 times. It is shown that for the sample with NS and CNT, the accumulation of nickel particles formed during the decomposition of the catalyst occurred (∼110 times) at 2 MPa on the carbon frame. The degree of catalyst particles accumulation at 15 MPa is ∼60 times lower than at 2 MPa, so the burning rate increases by only 1.3 times. At 2 MPa the catalyst significantly (by ∼68 K) increases the combustion surface temperature, by ∼2.7 times increases the temperature gradient in the carbon frame zone, and reduces the length of the primary (fizz zone) and secondary flames. As a result, the heat release rate on the frame is 13.5 times higher than on the carbon frame of the sample without a catalyst. For TNR samples the thermal conductivity coefficient, based on the characteristics of the framework obtained, was calculated, and it was shown that the thermal conductivity coefficient of the carbon frame for a sample with NS and CNT is significantly (∼8 times) higher than for a sample without a catalyst. From the calculation of the heat balance of the c-phase at 2 MPa it follows that the combustion leading zone of the sample with a catalyst is the carbon frame, from which ∼98% of the necessary for combustion propagation heat enters the c-phase; for a sample without a catalyst, the heat gain from the gas zone is ∼20%; the leading zone is the reaction layer of the condensed phase. Thus, the mechanism of combustion catalysis of aromatic nitro compounds is the same as for double-base propellants. Two conditions are necessary for combustion catalysis: the formation of a carbon frame on the combustion surface, on which catalyst particles accumulate, and the carbon frame thermal conductivity coefficient must be significantly higher than that of the gas zone above combustion surface of the sample without a catalyst.
期刊介绍:
As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.