热带中尺度对流系统形成环境

IF 2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Science Letters Pub Date : 2023-02-02 DOI:10.1002/asl.1152
Thomas J. Galarneau Jr., Xubin Zeng, Ross D. Dixon, Amir Ouyed, Hui Su, Wenjun Cui
{"title":"热带中尺度对流系统形成环境","authors":"Thomas J. Galarneau Jr.,&nbsp;Xubin Zeng,&nbsp;Ross D. Dixon,&nbsp;Amir Ouyed,&nbsp;Hui Su,&nbsp;Wenjun Cui","doi":"10.1002/asl.1152","DOIUrl":null,"url":null,"abstract":"<p>Mesoscale convective systems (MCSs) in the tropics play an integral role in the water cycle, are associated with local hazardous weather conditions, and have significant remote impacts on the midlatitude jet stream. Although it is known that MCSs occur in relatively moist environments, it is unclear how far in advance favorable ingredients (lift, instability, and moisture) in the mesoscale environment precede MCS formation. In this study, an automated MCS tracking algorithm and global reanalyses are used to examine the pre-MCS environment for 3295 MCSs that occurred in the tropics in a 3-month period. Results showed that increased water vapor and mesoscale ascent implied by low-level convergence and upper-level divergence preceded MCS formation by up to 24 h. Regional variations in pre-MCS environment conditions were apparent and are discussed. Future work will study to what extent these moisture and wind anomalies can be used to predict MCS formation.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1152","citationCount":"1","resultStr":"{\"title\":\"Tropical mesoscale convective system formation environments\",\"authors\":\"Thomas J. Galarneau Jr.,&nbsp;Xubin Zeng,&nbsp;Ross D. Dixon,&nbsp;Amir Ouyed,&nbsp;Hui Su,&nbsp;Wenjun Cui\",\"doi\":\"10.1002/asl.1152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mesoscale convective systems (MCSs) in the tropics play an integral role in the water cycle, are associated with local hazardous weather conditions, and have significant remote impacts on the midlatitude jet stream. Although it is known that MCSs occur in relatively moist environments, it is unclear how far in advance favorable ingredients (lift, instability, and moisture) in the mesoscale environment precede MCS formation. In this study, an automated MCS tracking algorithm and global reanalyses are used to examine the pre-MCS environment for 3295 MCSs that occurred in the tropics in a 3-month period. Results showed that increased water vapor and mesoscale ascent implied by low-level convergence and upper-level divergence preceded MCS formation by up to 24 h. Regional variations in pre-MCS environment conditions were apparent and are discussed. Future work will study to what extent these moisture and wind anomalies can be used to predict MCS formation.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1152\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1152\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1152","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

热带的中尺度对流系统(MCS)在水循环中发挥着不可或缺的作用,与当地的危险天气条件有关,并对中纬度急流产生重大的远程影响。尽管已知MCS发生在相对潮湿的环境中,但尚不清楚中尺度环境中的有利成分(升力、不稳定性和湿度)在MCS形成之前提前了多远。在这项研究中,使用自动MCS跟踪算法和全局再分析来检查热带地区3个月内发生的3295起MCS的MCS前环境。结果表明,低层辐合和高层辐散导致的水汽增加和中尺度上升比MCS形成早了24 h.MCS前环境条件的区域变化是明显的,并进行了讨论。未来的工作将研究这些湿度和风异常在多大程度上可以用于预测MCS的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tropical mesoscale convective system formation environments

Mesoscale convective systems (MCSs) in the tropics play an integral role in the water cycle, are associated with local hazardous weather conditions, and have significant remote impacts on the midlatitude jet stream. Although it is known that MCSs occur in relatively moist environments, it is unclear how far in advance favorable ingredients (lift, instability, and moisture) in the mesoscale environment precede MCS formation. In this study, an automated MCS tracking algorithm and global reanalyses are used to examine the pre-MCS environment for 3295 MCSs that occurred in the tropics in a 3-month period. Results showed that increased water vapor and mesoscale ascent implied by low-level convergence and upper-level divergence preceded MCS formation by up to 24 h. Regional variations in pre-MCS environment conditions were apparent and are discussed. Future work will study to what extent these moisture and wind anomalies can be used to predict MCS formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Science Letters
Atmospheric Science Letters METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
4.90
自引率
3.30%
发文量
73
审稿时长
>12 weeks
期刊介绍: Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques. We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.
期刊最新文献
Issue Information A simple subtropical high‐pressure system index over the South Atlantic Towards replacing precipitation ensemble predictions systems using machine learning Accuracy of daily extreme air temperatures under natural variations in thermometer screen ventilation Changing dynamics of Western European summertime cut‐off lows: A case study of the July 2021 flood event
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1