{"title":"利用2000年和2014年南非国家土地覆盖数据集检测KOSH地区14年期间的土地利用/覆盖变化","authors":"Abraham Thomas","doi":"10.4314/sajg.v8i2.1","DOIUrl":null,"url":null,"abstract":"Simple algebraic change detection techniques viz. image difference and image ratio were applied to the South African national land use / cover (NLC) datasets of years 2000 and 2014, prepared in grid format covering the Klerksdorp–Orkney–Stilfontein–Hartebeestfontein (KOSH) region in order to assess land use/land cover changes. Both the 2000 and 2014 NLC datasets were generated from Landsat images using different classification schemes and the code values & attributes of the land cover classes of the two datasets were different/not comparable. In order to make these datasets comparable for change detection, the NLC2000 dataset was examined in ArcView GIS by superimposing it onto the NLC2014 dataset and similarities and differences were identified. For each cover type of the NLC2000 dataset, comparable cover type of the 2014 dataset was identified by making a query to the NLC2000 dataset and after viewing the spatial distributions of selected units in respect of the NLC2014 dataset. Suitable code values of NLC2014 dataset were identified for the NLC2000 dataset and it was later reclassified. The land use / cover change detection study reveals that increase in areas were observed for the cover types: Cultivated common fields (low), Cultivated common fields (med), Mines 2 semi-bare, Wetlands, Urban commercial and Plantations/woodlots mature. The Grassland, Thicket/dense bush, Urban residential (dense trees/bush), Mines 1 bare, and Cultivated common pivots (high) showed a decrease in places. During the 14 years, Grassland had decreased from 2,132.47 km2 (77.35% of the total area) to 1,629.78 km2 (59.11% of the total area) owing to landscape transformation to other land covers (e.g. Cultivated common fields and Urban residential) due to human activities. The percentage increase in areas observed for the Cultivated common fields (low and medium) were 8.21% and 2.96% while the Mines 2 semi-bare, Wetlands, Urban commercial, Plantations/woodlots mature showed increases of 0.67%, 0.32%, 0.28% and 0.23% respectively. The area of Thicket/dense bush decreased from 108.15 km2 to 56.71 km2 (change of 1.87%). Maps of land use/land cover changes and statistics obtained for the changed areas are very useful for identifying various changes occurring in different classes and for monitoring land use dynamics.","PeriodicalId":43854,"journal":{"name":"South African Journal of Geomatics","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2019-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of land use / cover changes of the KOSH region over a period of 14 years using the South African National Land Cover datasets for 2000 and 2014\",\"authors\":\"Abraham Thomas\",\"doi\":\"10.4314/sajg.v8i2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple algebraic change detection techniques viz. image difference and image ratio were applied to the South African national land use / cover (NLC) datasets of years 2000 and 2014, prepared in grid format covering the Klerksdorp–Orkney–Stilfontein–Hartebeestfontein (KOSH) region in order to assess land use/land cover changes. Both the 2000 and 2014 NLC datasets were generated from Landsat images using different classification schemes and the code values & attributes of the land cover classes of the two datasets were different/not comparable. In order to make these datasets comparable for change detection, the NLC2000 dataset was examined in ArcView GIS by superimposing it onto the NLC2014 dataset and similarities and differences were identified. For each cover type of the NLC2000 dataset, comparable cover type of the 2014 dataset was identified by making a query to the NLC2000 dataset and after viewing the spatial distributions of selected units in respect of the NLC2014 dataset. Suitable code values of NLC2014 dataset were identified for the NLC2000 dataset and it was later reclassified. The land use / cover change detection study reveals that increase in areas were observed for the cover types: Cultivated common fields (low), Cultivated common fields (med), Mines 2 semi-bare, Wetlands, Urban commercial and Plantations/woodlots mature. The Grassland, Thicket/dense bush, Urban residential (dense trees/bush), Mines 1 bare, and Cultivated common pivots (high) showed a decrease in places. During the 14 years, Grassland had decreased from 2,132.47 km2 (77.35% of the total area) to 1,629.78 km2 (59.11% of the total area) owing to landscape transformation to other land covers (e.g. Cultivated common fields and Urban residential) due to human activities. The percentage increase in areas observed for the Cultivated common fields (low and medium) were 8.21% and 2.96% while the Mines 2 semi-bare, Wetlands, Urban commercial, Plantations/woodlots mature showed increases of 0.67%, 0.32%, 0.28% and 0.23% respectively. The area of Thicket/dense bush decreased from 108.15 km2 to 56.71 km2 (change of 1.87%). Maps of land use/land cover changes and statistics obtained for the changed areas are very useful for identifying various changes occurring in different classes and for monitoring land use dynamics.\",\"PeriodicalId\":43854,\"journal\":{\"name\":\"South African Journal of Geomatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2019-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"South African Journal of Geomatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4314/sajg.v8i2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"South African Journal of Geomatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/sajg.v8i2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
Detection of land use / cover changes of the KOSH region over a period of 14 years using the South African National Land Cover datasets for 2000 and 2014
Simple algebraic change detection techniques viz. image difference and image ratio were applied to the South African national land use / cover (NLC) datasets of years 2000 and 2014, prepared in grid format covering the Klerksdorp–Orkney–Stilfontein–Hartebeestfontein (KOSH) region in order to assess land use/land cover changes. Both the 2000 and 2014 NLC datasets were generated from Landsat images using different classification schemes and the code values & attributes of the land cover classes of the two datasets were different/not comparable. In order to make these datasets comparable for change detection, the NLC2000 dataset was examined in ArcView GIS by superimposing it onto the NLC2014 dataset and similarities and differences were identified. For each cover type of the NLC2000 dataset, comparable cover type of the 2014 dataset was identified by making a query to the NLC2000 dataset and after viewing the spatial distributions of selected units in respect of the NLC2014 dataset. Suitable code values of NLC2014 dataset were identified for the NLC2000 dataset and it was later reclassified. The land use / cover change detection study reveals that increase in areas were observed for the cover types: Cultivated common fields (low), Cultivated common fields (med), Mines 2 semi-bare, Wetlands, Urban commercial and Plantations/woodlots mature. The Grassland, Thicket/dense bush, Urban residential (dense trees/bush), Mines 1 bare, and Cultivated common pivots (high) showed a decrease in places. During the 14 years, Grassland had decreased from 2,132.47 km2 (77.35% of the total area) to 1,629.78 km2 (59.11% of the total area) owing to landscape transformation to other land covers (e.g. Cultivated common fields and Urban residential) due to human activities. The percentage increase in areas observed for the Cultivated common fields (low and medium) were 8.21% and 2.96% while the Mines 2 semi-bare, Wetlands, Urban commercial, Plantations/woodlots mature showed increases of 0.67%, 0.32%, 0.28% and 0.23% respectively. The area of Thicket/dense bush decreased from 108.15 km2 to 56.71 km2 (change of 1.87%). Maps of land use/land cover changes and statistics obtained for the changed areas are very useful for identifying various changes occurring in different classes and for monitoring land use dynamics.