McKay Echols, Zuliang Deng, Coby G. D. Powers, HuaPing Xiao, Ziwen Zhu, Marco Lequio, Samuel Leung, Qian Bai, M. Wakefield, Yujiang Fang
{"title":"SARS-CoV-2刺突蛋白对癌症前列腺ICOSL和ICAM-2表达的影响","authors":"McKay Echols, Zuliang Deng, Coby G. D. Powers, HuaPing Xiao, Ziwen Zhu, Marco Lequio, Samuel Leung, Qian Bai, M. Wakefield, Yujiang Fang","doi":"10.31083/j.jomh1810201","DOIUrl":null,"url":null,"abstract":"Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the COVID-19 pandemic. The viral protein of SARS-CoV-2, spike protein (SP), mediates entry into host cells, contributing to pathogenesis of COVID-19. Prostate cancer is the most common cancer among men in the United States. Inducible T-cell costimulator ligand (ICOSL) and intercellular cell adhesion molecule 2 (ICAM-2) are expressed in cancer cells and their roles in cancer growth remain controversial. It is unknown if SP can affect the expression of ICAM-2 or ICOSL in prostate cancer. This study investigated the effects of SARS-CoV-2 SP on the expression of ICAM-2 and ICOSL and the time-dependent effect of SP on growth and survival of prostate cancer cells. Methods: The effect of SARS-CoV-2 SP on the survival of a widely-used prostate cancer cell line, LNCaP, was assessed using clonogenic cell survival assay and quick cell proliferation assay. Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were performed to investigate the expression of ICAM-2 and ICOSL. The survival of an additional prostate cancer cell line, PC-3, was also evaluated by clonogenic survival assay. Results: After 3 days, a significant decrease in the percentage of colonies in LNCaP cells treated with SP was found, which was paralleled by a decrease in optical density (OD) value in LNCaP cells in the presence of SP. A significant decrease in the percentage of colonies treated with SP was also found in PC-3 cells evaluated by clonogenic survival assay. In addition, the mRNA expression of ICAM-2 was lower, whereas the mRNA expression of ICOSL was higher in SP-treated LNCaP cells. This was supported by protein expressions for ICAM-2 and ICOSL evaluated with IHC. Conclusions: In LNCaP cells, SARS-CoV-2 SP downregulates the expression of ICAM-2 but upregulates the expression of ICOSL. SARS-CoV-2 SP inhibits growth of prostate cancer cells in a time-dependent manner. Further studies are needed to fully address the roles of ICAM-2 and ICOSL in the inhibition prostate cancer growth by SARS-CoV-2 SP.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"SARS-CoV-2 Spike Protein Influences Expression of ICOSL and ICAM-2 in Prostate Cancer\",\"authors\":\"McKay Echols, Zuliang Deng, Coby G. D. Powers, HuaPing Xiao, Ziwen Zhu, Marco Lequio, Samuel Leung, Qian Bai, M. Wakefield, Yujiang Fang\",\"doi\":\"10.31083/j.jomh1810201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the COVID-19 pandemic. The viral protein of SARS-CoV-2, spike protein (SP), mediates entry into host cells, contributing to pathogenesis of COVID-19. Prostate cancer is the most common cancer among men in the United States. Inducible T-cell costimulator ligand (ICOSL) and intercellular cell adhesion molecule 2 (ICAM-2) are expressed in cancer cells and their roles in cancer growth remain controversial. It is unknown if SP can affect the expression of ICAM-2 or ICOSL in prostate cancer. This study investigated the effects of SARS-CoV-2 SP on the expression of ICAM-2 and ICOSL and the time-dependent effect of SP on growth and survival of prostate cancer cells. Methods: The effect of SARS-CoV-2 SP on the survival of a widely-used prostate cancer cell line, LNCaP, was assessed using clonogenic cell survival assay and quick cell proliferation assay. Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were performed to investigate the expression of ICAM-2 and ICOSL. The survival of an additional prostate cancer cell line, PC-3, was also evaluated by clonogenic survival assay. Results: After 3 days, a significant decrease in the percentage of colonies in LNCaP cells treated with SP was found, which was paralleled by a decrease in optical density (OD) value in LNCaP cells in the presence of SP. A significant decrease in the percentage of colonies treated with SP was also found in PC-3 cells evaluated by clonogenic survival assay. In addition, the mRNA expression of ICAM-2 was lower, whereas the mRNA expression of ICOSL was higher in SP-treated LNCaP cells. This was supported by protein expressions for ICAM-2 and ICOSL evaluated with IHC. Conclusions: In LNCaP cells, SARS-CoV-2 SP downregulates the expression of ICAM-2 but upregulates the expression of ICOSL. SARS-CoV-2 SP inhibits growth of prostate cancer cells in a time-dependent manner. Further studies are needed to fully address the roles of ICAM-2 and ICOSL in the inhibition prostate cancer growth by SARS-CoV-2 SP.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.31083/j.jomh1810201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.31083/j.jomh1810201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
SARS-CoV-2 Spike Protein Influences Expression of ICOSL and ICAM-2 in Prostate Cancer
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus responsible for the COVID-19 pandemic. The viral protein of SARS-CoV-2, spike protein (SP), mediates entry into host cells, contributing to pathogenesis of COVID-19. Prostate cancer is the most common cancer among men in the United States. Inducible T-cell costimulator ligand (ICOSL) and intercellular cell adhesion molecule 2 (ICAM-2) are expressed in cancer cells and their roles in cancer growth remain controversial. It is unknown if SP can affect the expression of ICAM-2 or ICOSL in prostate cancer. This study investigated the effects of SARS-CoV-2 SP on the expression of ICAM-2 and ICOSL and the time-dependent effect of SP on growth and survival of prostate cancer cells. Methods: The effect of SARS-CoV-2 SP on the survival of a widely-used prostate cancer cell line, LNCaP, was assessed using clonogenic cell survival assay and quick cell proliferation assay. Reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) were performed to investigate the expression of ICAM-2 and ICOSL. The survival of an additional prostate cancer cell line, PC-3, was also evaluated by clonogenic survival assay. Results: After 3 days, a significant decrease in the percentage of colonies in LNCaP cells treated with SP was found, which was paralleled by a decrease in optical density (OD) value in LNCaP cells in the presence of SP. A significant decrease in the percentage of colonies treated with SP was also found in PC-3 cells evaluated by clonogenic survival assay. In addition, the mRNA expression of ICAM-2 was lower, whereas the mRNA expression of ICOSL was higher in SP-treated LNCaP cells. This was supported by protein expressions for ICAM-2 and ICOSL evaluated with IHC. Conclusions: In LNCaP cells, SARS-CoV-2 SP downregulates the expression of ICAM-2 but upregulates the expression of ICOSL. SARS-CoV-2 SP inhibits growth of prostate cancer cells in a time-dependent manner. Further studies are needed to fully address the roles of ICAM-2 and ICOSL in the inhibition prostate cancer growth by SARS-CoV-2 SP.