基于向量形式固有有限元的机车张拉整体系统改进数值模型

IF 2.3 4区 计算机科学 Q2 Computer Science International Journal of Advanced Robotic Systems Pub Date : 2023-03-01 DOI:10.1177/17298806231162442
Xian Xu, Meijia Wang, Yanfeng Zheng, Chunlin Zhou, Yaozhi Luo
{"title":"基于向量形式固有有限元的机车张拉整体系统改进数值模型","authors":"Xian Xu, Meijia Wang, Yanfeng Zheng, Chunlin Zhou, Yaozhi Luo","doi":"10.1177/17298806231162442","DOIUrl":null,"url":null,"abstract":"Locomotive robot based on tensegrity has recently drawn much attention due to its lightweight and flexibility. This article presents an improved numerical model for locomotive tensegrities. The previously used bar element for struts is replaced by beam element, and rigid joint element is used to consider more details of the tendon–strut connections. The vector form intrinsic finite element (VFIFE) method is adopted to formulate the numerical model and carry out the simulation. The improvement of the proposed model on the prediction of feasible rolling gaits is quantitatively verified by experiments on a six-strut locomotive tensegrity. Mann–Whitney U test is adopted, and the p value between the experimental success rates of the gait primitives generated by the improved model and the rates of the gait primitives generated by the previous model is 1.46 × 10 − 12 . It is shown that the improved model is more consistent with the experiment by considering the details of the tendon–strut connection.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved numerical model for locomotive tensegrity systems based on vector form intrinsic finite element\",\"authors\":\"Xian Xu, Meijia Wang, Yanfeng Zheng, Chunlin Zhou, Yaozhi Luo\",\"doi\":\"10.1177/17298806231162442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Locomotive robot based on tensegrity has recently drawn much attention due to its lightweight and flexibility. This article presents an improved numerical model for locomotive tensegrities. The previously used bar element for struts is replaced by beam element, and rigid joint element is used to consider more details of the tendon–strut connections. The vector form intrinsic finite element (VFIFE) method is adopted to formulate the numerical model and carry out the simulation. The improvement of the proposed model on the prediction of feasible rolling gaits is quantitatively verified by experiments on a six-strut locomotive tensegrity. Mann–Whitney U test is adopted, and the p value between the experimental success rates of the gait primitives generated by the improved model and the rates of the gait primitives generated by the previous model is 1.46 × 10 − 12 . It is shown that the improved model is more consistent with the experiment by considering the details of the tendon–strut connection.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806231162442\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806231162442","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

基于张拉整体的机车机器人以其轻便、灵活的特点近年来备受关注。本文提出了一种改进的机车张拉整体数值模型。将原有的杆单元替换为梁单元,采用刚性节点单元来考虑筋-杆连接的更多细节。采用矢量形式本征有限元(VFIFE)方法建立数值模型并进行仿真。通过对六杆机车张拉整体的实验,定量验证了该模型对可行滚动步态预测的改进。采用Mann-Whitney U检验,改进模型生成的步态原语的实验成功率与原模型生成的步态原语的实验成功率之间的p值为1.46 × 10−12。结果表明,考虑筋杆连接细节的改进模型与试验结果更加吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved numerical model for locomotive tensegrity systems based on vector form intrinsic finite element
Locomotive robot based on tensegrity has recently drawn much attention due to its lightweight and flexibility. This article presents an improved numerical model for locomotive tensegrities. The previously used bar element for struts is replaced by beam element, and rigid joint element is used to consider more details of the tendon–strut connections. The vector form intrinsic finite element (VFIFE) method is adopted to formulate the numerical model and carry out the simulation. The improvement of the proposed model on the prediction of feasible rolling gaits is quantitatively verified by experiments on a six-strut locomotive tensegrity. Mann–Whitney U test is adopted, and the p value between the experimental success rates of the gait primitives generated by the improved model and the rates of the gait primitives generated by the previous model is 1.46 × 10 − 12 . It is shown that the improved model is more consistent with the experiment by considering the details of the tendon–strut connection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
期刊最新文献
Expanded photo-model-based stereo vision pose estimation using a shooting distance unknown photo Enhanced lightweight deep network for efficient livestock detection in grazing areas Manipulate mechanism design and synchronous motion application for driving simulator A general method for the manipulability analysis of serial robot manipulators Design, simulation, and experiment for the end effector of a spherical fruit picking robot
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1