{"title":"基因组序列组装的挑战","authors":"A. Collins","doi":"10.2174/1875036201811010231","DOIUrl":null,"url":null,"abstract":"\n \n Although whole genome sequencing is enabling numerous advances in many fields achieving complete chromosome-level sequence assemblies for diverse species presents difficulties. The problems in part reflect the limitations of current sequencing technologies. Chromosome assembly from ‘short read’ sequence data is confounded by the presence of repetitive genome regions with numerous similar sequence tracts which cannot be accurately positioned in the assembled sequence. Longer sequence reads often have higher error rates and may still be too short to span the larger gaps between contigs.\n \n \n \n Given the emergence of exciting new applications using sequencing technology, such as the Earth BioGenome Project, it is necessary to further develop and apply a range of strategies to achieve robust chromosome-level sequence assembly. Reviewed here are a range of methods to enhance assembly which include the use of cross-species synteny to understand relationships between sequence contigs, the development of independent genetic and/or physical scaffold maps as frameworks for assembly (for example, radiation hybrid, optical motif and chromatin interaction maps) and the use of patterns of linkage disequilibrium to help position, orient and locate contigs.\n \n \n \n A range of methods exist which might be further developed to facilitate cost-effective large-scale sequence assembly for diverse species. A combination of strategies is required to best assemble sequence data into chromosome-level assemblies. There are a number of routes towards the development of maps which span chromosomes (including physical, genetic and linkage disequilibrium maps) and construction of these whole chromosome maps greatly facilitates the ordering and orientation of sequence contigs.\n","PeriodicalId":38956,"journal":{"name":"Open Bioinformatics Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Challenge of Genome Sequence Assembly\",\"authors\":\"A. Collins\",\"doi\":\"10.2174/1875036201811010231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n Although whole genome sequencing is enabling numerous advances in many fields achieving complete chromosome-level sequence assemblies for diverse species presents difficulties. The problems in part reflect the limitations of current sequencing technologies. Chromosome assembly from ‘short read’ sequence data is confounded by the presence of repetitive genome regions with numerous similar sequence tracts which cannot be accurately positioned in the assembled sequence. Longer sequence reads often have higher error rates and may still be too short to span the larger gaps between contigs.\\n \\n \\n \\n Given the emergence of exciting new applications using sequencing technology, such as the Earth BioGenome Project, it is necessary to further develop and apply a range of strategies to achieve robust chromosome-level sequence assembly. Reviewed here are a range of methods to enhance assembly which include the use of cross-species synteny to understand relationships between sequence contigs, the development of independent genetic and/or physical scaffold maps as frameworks for assembly (for example, radiation hybrid, optical motif and chromatin interaction maps) and the use of patterns of linkage disequilibrium to help position, orient and locate contigs.\\n \\n \\n \\n A range of methods exist which might be further developed to facilitate cost-effective large-scale sequence assembly for diverse species. A combination of strategies is required to best assemble sequence data into chromosome-level assemblies. There are a number of routes towards the development of maps which span chromosomes (including physical, genetic and linkage disequilibrium maps) and construction of these whole chromosome maps greatly facilitates the ordering and orientation of sequence contigs.\\n\",\"PeriodicalId\":38956,\"journal\":{\"name\":\"Open Bioinformatics Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Bioinformatics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1875036201811010231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Bioinformatics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1875036201811010231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
Although whole genome sequencing is enabling numerous advances in many fields achieving complete chromosome-level sequence assemblies for diverse species presents difficulties. The problems in part reflect the limitations of current sequencing technologies. Chromosome assembly from ‘short read’ sequence data is confounded by the presence of repetitive genome regions with numerous similar sequence tracts which cannot be accurately positioned in the assembled sequence. Longer sequence reads often have higher error rates and may still be too short to span the larger gaps between contigs.
Given the emergence of exciting new applications using sequencing technology, such as the Earth BioGenome Project, it is necessary to further develop and apply a range of strategies to achieve robust chromosome-level sequence assembly. Reviewed here are a range of methods to enhance assembly which include the use of cross-species synteny to understand relationships between sequence contigs, the development of independent genetic and/or physical scaffold maps as frameworks for assembly (for example, radiation hybrid, optical motif and chromatin interaction maps) and the use of patterns of linkage disequilibrium to help position, orient and locate contigs.
A range of methods exist which might be further developed to facilitate cost-effective large-scale sequence assembly for diverse species. A combination of strategies is required to best assemble sequence data into chromosome-level assemblies. There are a number of routes towards the development of maps which span chromosomes (including physical, genetic and linkage disequilibrium maps) and construction of these whole chromosome maps greatly facilitates the ordering and orientation of sequence contigs.
期刊介绍:
The Open Bioinformatics Journal is an Open Access online journal, which publishes research articles, reviews/mini-reviews, letters, clinical trial studies and guest edited single topic issues in all areas of bioinformatics and computational biology. The coverage includes biomedicine, focusing on large data acquisition, analysis and curation, computational and statistical methods for the modeling and analysis of biological data, and descriptions of new algorithms and databases. The Open Bioinformatics Journal, a peer reviewed journal, is an important and reliable source of current information on the developments in the field. The emphasis will be on publishing quality articles rapidly and freely available worldwide.