{"title":"泰勒-库埃特流中使用速度控制的减阻","authors":"O. Khawar, M. F. Baig, S. Sanghi","doi":"10.1080/14685248.2022.2109653","DOIUrl":null,"url":null,"abstract":"Direct numerical simulation of Taylor–Couette flow subject to opposition control is investigated at Reynolds number (Re) of 3000. The idea is to impose exact opposite velocities of the detection plane at the walls to counteract near-wall stream-wise vortices. In this study, various velocity control strategies, namely wall-normal, axial, combined and blowing only, have been investigated from the viewpoint of skin-friction drag reduction. Further, the effects of skipping spatial points in azimuthal and axial directions and in time have been investigated from a drag reduction point of view. Based on the emergence of a virtual wall that hinders the vertical transport of momentum (i.e. on reduction of Reynolds shear stress production as well as sweep ejection events), flow physics has been explained via statistical analysis of fluctuations, Reynolds shear stresses, and near-wall coherent structures. The spatial density of near-wall vortical structures shows a marked reduction, followed by quadrant contribution analysis of Reynolds shear stresses reveals a decrease in ejection and sweep events, leading to reduced production of Reynolds shear stresses and skin-friction drag.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"23 1","pages":"467 - 491"},"PeriodicalIF":1.5000,"publicationDate":"2022-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Drag reduction using velocity control in Taylor–Couette flows\",\"authors\":\"O. Khawar, M. F. Baig, S. Sanghi\",\"doi\":\"10.1080/14685248.2022.2109653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct numerical simulation of Taylor–Couette flow subject to opposition control is investigated at Reynolds number (Re) of 3000. The idea is to impose exact opposite velocities of the detection plane at the walls to counteract near-wall stream-wise vortices. In this study, various velocity control strategies, namely wall-normal, axial, combined and blowing only, have been investigated from the viewpoint of skin-friction drag reduction. Further, the effects of skipping spatial points in azimuthal and axial directions and in time have been investigated from a drag reduction point of view. Based on the emergence of a virtual wall that hinders the vertical transport of momentum (i.e. on reduction of Reynolds shear stress production as well as sweep ejection events), flow physics has been explained via statistical analysis of fluctuations, Reynolds shear stresses, and near-wall coherent structures. The spatial density of near-wall vortical structures shows a marked reduction, followed by quadrant contribution analysis of Reynolds shear stresses reveals a decrease in ejection and sweep events, leading to reduced production of Reynolds shear stresses and skin-friction drag.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":\"23 1\",\"pages\":\"467 - 491\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2022.2109653\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2022.2109653","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Drag reduction using velocity control in Taylor–Couette flows
Direct numerical simulation of Taylor–Couette flow subject to opposition control is investigated at Reynolds number (Re) of 3000. The idea is to impose exact opposite velocities of the detection plane at the walls to counteract near-wall stream-wise vortices. In this study, various velocity control strategies, namely wall-normal, axial, combined and blowing only, have been investigated from the viewpoint of skin-friction drag reduction. Further, the effects of skipping spatial points in azimuthal and axial directions and in time have been investigated from a drag reduction point of view. Based on the emergence of a virtual wall that hinders the vertical transport of momentum (i.e. on reduction of Reynolds shear stress production as well as sweep ejection events), flow physics has been explained via statistical analysis of fluctuations, Reynolds shear stresses, and near-wall coherent structures. The spatial density of near-wall vortical structures shows a marked reduction, followed by quadrant contribution analysis of Reynolds shear stresses reveals a decrease in ejection and sweep events, leading to reduced production of Reynolds shear stresses and skin-friction drag.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.