外源甘氨酸甜菜碱对镉诱导黄瓜幼苗光合性能、抗氧化代谢和ATP酶变化的影响

IF 2.3 3区 农林科学 Q1 AGRONOMY Plant, Soil and Environment Pub Date : 2022-09-02 DOI:10.17221/141/2022-pse
Hongyan Sun, Xiaoyun Wang, Jia Yu, Yifang Gao, Xianjun Liu, Xiaoxiao Wang, Xiaoli Wu
{"title":"外源甘氨酸甜菜碱对镉诱导黄瓜幼苗光合性能、抗氧化代谢和ATP酶变化的影响","authors":"Hongyan Sun, Xiaoyun Wang, Jia Yu, Yifang Gao, Xianjun Liu, Xiaoxiao Wang, Xiaoli Wu","doi":"10.17221/141/2022-pse","DOIUrl":null,"url":null,"abstract":"A hydroponic experiment was carried out to study the ameliorative effects of exogenous glycinebetaine (GB) upon cadmium (Cd) toxicity in cucumber seedlings. The results indicated that 50 μmol/L Cd stress decreased soil plant analysis development (SPAD) value, plant height, root length, seedling biomass, activities of ascorbate peroxidase (APX) and ATPase in leaves, stems and roots; however, increased peroxidase (POD) and superoxide dismutase (SOD) activities in all tissues, catalase (CAT) activities in stems/roots. Moreover, Cd stress also elevated leaf/root malondialdehyde (MDA), proline, phenols and flavonoid content in all cucumber tissues over the control. The supplementation of GB (Cd + GB) prominently alleviated Cd-induced growth inhibition and oxidative stress, increased SPAD value and stem ATPase, and improved photosynthetic performance compared with Cd treatment alone. Furthermore, external GB diminished leaf/root MDA accumulation and decreased leaf/root proline contents as well as phenols and flavonoid contents in all tissues. Meanwhile, exogenous GB counteracted Cd-induced alterations of certain antioxidant enzymes. For example, it brought all tissue POD and SOD activities and stem/root CAT activities down towards the control level and significantly increased APX activities, especially in leaves and stems. These data suggested the principal protective mechanism for the exogenous GB against Cd toxicity in cucumber seedlings is closely related to improved photosynthesis, diminished Cd-induced proline and MDA accumulation, enhanced ATPase as well as modulation of antioxidant enzymes.","PeriodicalId":20155,"journal":{"name":"Plant, Soil and Environment","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Effects of exogenous glycinebetaine on cadmium-induced changes in photosynthetic performance, antioxidative metabolism and ATPase in cucumber seedlings\",\"authors\":\"Hongyan Sun, Xiaoyun Wang, Jia Yu, Yifang Gao, Xianjun Liu, Xiaoxiao Wang, Xiaoli Wu\",\"doi\":\"10.17221/141/2022-pse\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A hydroponic experiment was carried out to study the ameliorative effects of exogenous glycinebetaine (GB) upon cadmium (Cd) toxicity in cucumber seedlings. The results indicated that 50 μmol/L Cd stress decreased soil plant analysis development (SPAD) value, plant height, root length, seedling biomass, activities of ascorbate peroxidase (APX) and ATPase in leaves, stems and roots; however, increased peroxidase (POD) and superoxide dismutase (SOD) activities in all tissues, catalase (CAT) activities in stems/roots. Moreover, Cd stress also elevated leaf/root malondialdehyde (MDA), proline, phenols and flavonoid content in all cucumber tissues over the control. The supplementation of GB (Cd + GB) prominently alleviated Cd-induced growth inhibition and oxidative stress, increased SPAD value and stem ATPase, and improved photosynthetic performance compared with Cd treatment alone. Furthermore, external GB diminished leaf/root MDA accumulation and decreased leaf/root proline contents as well as phenols and flavonoid contents in all tissues. Meanwhile, exogenous GB counteracted Cd-induced alterations of certain antioxidant enzymes. For example, it brought all tissue POD and SOD activities and stem/root CAT activities down towards the control level and significantly increased APX activities, especially in leaves and stems. These data suggested the principal protective mechanism for the exogenous GB against Cd toxicity in cucumber seedlings is closely related to improved photosynthesis, diminished Cd-induced proline and MDA accumulation, enhanced ATPase as well as modulation of antioxidant enzymes.\",\"PeriodicalId\":20155,\"journal\":{\"name\":\"Plant, Soil and Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Soil and Environment\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.17221/141/2022-pse\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Soil and Environment","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.17221/141/2022-pse","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 2

摘要

采用水培试验研究了外源甘氨酸甜菜碱(GB)对黄瓜幼苗镉(Cd)毒性的改善作用。结果表明,50μmol/L镉胁迫降低了土壤植物分析发育(SPAD)值、株高、根长、幼苗生物量、叶、茎和根中抗坏血酸过氧化物酶(APX)和ATP酶活性;然而,所有组织中的过氧化物酶(POD)和超氧化物歧化酶(SOD)活性增加,茎/根中的过氧化氢酶(CAT)活性增加。此外,镉胁迫还使黄瓜各组织的叶/根丙二醛(MDA)、脯氨酸、酚类和类黄酮含量均高于对照。与单独镉处理相比,补充GB(Cd+GB)显著减轻了镉诱导的生长抑制和氧化应激,增加了SPAD值和茎ATP酶,改善了光合性能。此外,外源GB减少了叶片/根MDA的积累,降低了所有组织中叶片/根脯氨酸含量以及酚类和类黄酮含量。同时,外源GB对抗了Cd诱导的某些抗氧化酶的改变。例如,它使所有组织POD和SOD活性以及茎/根CAT活性下降到对照水平,并显著增加APX活性,尤其是在叶片和茎中。这些数据表明,外源GB对黄瓜幼苗镉毒性的主要保护机制与提高光合作用、减少镉诱导的脯氨酸和MDA积累、增强ATP酶以及调节抗氧化酶密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of exogenous glycinebetaine on cadmium-induced changes in photosynthetic performance, antioxidative metabolism and ATPase in cucumber seedlings
A hydroponic experiment was carried out to study the ameliorative effects of exogenous glycinebetaine (GB) upon cadmium (Cd) toxicity in cucumber seedlings. The results indicated that 50 μmol/L Cd stress decreased soil plant analysis development (SPAD) value, plant height, root length, seedling biomass, activities of ascorbate peroxidase (APX) and ATPase in leaves, stems and roots; however, increased peroxidase (POD) and superoxide dismutase (SOD) activities in all tissues, catalase (CAT) activities in stems/roots. Moreover, Cd stress also elevated leaf/root malondialdehyde (MDA), proline, phenols and flavonoid content in all cucumber tissues over the control. The supplementation of GB (Cd + GB) prominently alleviated Cd-induced growth inhibition and oxidative stress, increased SPAD value and stem ATPase, and improved photosynthetic performance compared with Cd treatment alone. Furthermore, external GB diminished leaf/root MDA accumulation and decreased leaf/root proline contents as well as phenols and flavonoid contents in all tissues. Meanwhile, exogenous GB counteracted Cd-induced alterations of certain antioxidant enzymes. For example, it brought all tissue POD and SOD activities and stem/root CAT activities down towards the control level and significantly increased APX activities, especially in leaves and stems. These data suggested the principal protective mechanism for the exogenous GB against Cd toxicity in cucumber seedlings is closely related to improved photosynthesis, diminished Cd-induced proline and MDA accumulation, enhanced ATPase as well as modulation of antioxidant enzymes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Soil and Environment
Plant, Soil and Environment Agronomy, Soil Science-农艺学
CiteScore
4.80
自引率
4.20%
发文量
61
审稿时长
2.4 months
期刊介绍: Experimental biology, agronomy, natural resources, and the environment; plant development, growth and productivity, breeding and seed production, growing of crops and their quality, soil care, conservation and productivity; agriculture and environment interactions from the perspective of sustainable development. Articles are published in English.
期刊最新文献
Nitrogen losses (N2O and NO3-) from mustard (Brassica juncea L.) cropping applied urea coated bio-charcoal Differences in the removal efficiency of heavy metals in soils with different vegetation backgrounds along the China-Russia crude oil pipeline Polymorphism of Bolivian accessions of Arachis hypogaea L. revealed by allergen coding DNA markers Characterisation of iodo- plus mesosulfuron resistance in an Alopecurus myosuroides Huds. Population from the Czech Republic Hyperspectral analysis of the content of the alkali-hydrolysed nitrogen in the soil of a millet field
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1