{"title":"侵蚀率制图控制:德国北部农田模型与监测数据的比较","authors":"Bastian Steinhoff-Knopp, Benjamin Burkhard","doi":"10.3897/ONEECO.3.E26382","DOIUrl":null,"url":null,"abstract":"Control of erosion rates (CER) is a key ecosystem service for soil protection. It is mandatory for sustaining the capacity, especially of agroecosystems, to provide ecosystem services. By applying an established framework to assess soil regulating services, this study compares two approaches to assess CER provision for 466 ha of cropland in Lower Saxony (Central Northern Germany). In a \"sealed modelling approach\", the structural and the mitigated structural impact were modelled by applying the Universal Soil Loss Equation (USLE). The second approach uses spatially explicit long-term monitoring data on soil loss rates obtained in the investigation area as an alternative to the USLE-based modelled mitigated structural impact.\n Assuming that the monitoring data have a higher reliability than the modelled data, the comparison of both approaches demonstrated the uncertainties of the USLE-based assessment of CER. The calculated indicators based on a sound monitoring database on soil loss rates showed that, due to limitations of the USLE model, the structural impact in thalwegs has been underestimated. Incorporating models with the ability to estimate soil loss by rilling und gullying can help to overcome this uncertainty.\n The produced set of complementary large-scale CER maps enables an integrated analyses of CER. In the entire investigation area, the provision of CER regulating ecosystem services was generally high, indicating good management practices. Differences at the field scale and between the different regions can be explained by variations of the structural impact and the management practices.","PeriodicalId":36908,"journal":{"name":"One Ecosystem","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2018-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Mapping Control of Erosion Rates: Comparing Model and Monitoring Data for Croplands in Northern Germany\",\"authors\":\"Bastian Steinhoff-Knopp, Benjamin Burkhard\",\"doi\":\"10.3897/ONEECO.3.E26382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Control of erosion rates (CER) is a key ecosystem service for soil protection. It is mandatory for sustaining the capacity, especially of agroecosystems, to provide ecosystem services. By applying an established framework to assess soil regulating services, this study compares two approaches to assess CER provision for 466 ha of cropland in Lower Saxony (Central Northern Germany). In a \\\"sealed modelling approach\\\", the structural and the mitigated structural impact were modelled by applying the Universal Soil Loss Equation (USLE). The second approach uses spatially explicit long-term monitoring data on soil loss rates obtained in the investigation area as an alternative to the USLE-based modelled mitigated structural impact.\\n Assuming that the monitoring data have a higher reliability than the modelled data, the comparison of both approaches demonstrated the uncertainties of the USLE-based assessment of CER. The calculated indicators based on a sound monitoring database on soil loss rates showed that, due to limitations of the USLE model, the structural impact in thalwegs has been underestimated. Incorporating models with the ability to estimate soil loss by rilling und gullying can help to overcome this uncertainty.\\n The produced set of complementary large-scale CER maps enables an integrated analyses of CER. In the entire investigation area, the provision of CER regulating ecosystem services was generally high, indicating good management practices. Differences at the field scale and between the different regions can be explained by variations of the structural impact and the management practices.\",\"PeriodicalId\":36908,\"journal\":{\"name\":\"One Ecosystem\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2018-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"One Ecosystem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/ONEECO.3.E26382\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"One Ecosystem","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/ONEECO.3.E26382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
Mapping Control of Erosion Rates: Comparing Model and Monitoring Data for Croplands in Northern Germany
Control of erosion rates (CER) is a key ecosystem service for soil protection. It is mandatory for sustaining the capacity, especially of agroecosystems, to provide ecosystem services. By applying an established framework to assess soil regulating services, this study compares two approaches to assess CER provision for 466 ha of cropland in Lower Saxony (Central Northern Germany). In a "sealed modelling approach", the structural and the mitigated structural impact were modelled by applying the Universal Soil Loss Equation (USLE). The second approach uses spatially explicit long-term monitoring data on soil loss rates obtained in the investigation area as an alternative to the USLE-based modelled mitigated structural impact.
Assuming that the monitoring data have a higher reliability than the modelled data, the comparison of both approaches demonstrated the uncertainties of the USLE-based assessment of CER. The calculated indicators based on a sound monitoring database on soil loss rates showed that, due to limitations of the USLE model, the structural impact in thalwegs has been underestimated. Incorporating models with the ability to estimate soil loss by rilling und gullying can help to overcome this uncertainty.
The produced set of complementary large-scale CER maps enables an integrated analyses of CER. In the entire investigation area, the provision of CER regulating ecosystem services was generally high, indicating good management practices. Differences at the field scale and between the different regions can be explained by variations of the structural impact and the management practices.