发育期髓鞘形成和疾病中少突胶质细胞的DNA甲基化

Sarah Moyon, P. Casaccia
{"title":"发育期髓鞘形成和疾病中少突胶质细胞的DNA甲基化","authors":"Sarah Moyon, P. Casaccia","doi":"10.1080/23262133.2016.1270381","DOIUrl":null,"url":null,"abstract":"ABSTRACT Oligodendrocyte progenitor cells (OPC) are the myelinating cells of the central nervous system (CNS). During development, they differentiate into mature oligodendrocytes (OL) and ensheath axons, providing trophic and functional support to the neurons. This process is regulated by the dynamic expression of specific transcription factors, which, in turn, is controlled by epigenetic marks such as DNA methylation. Here we discuss recent findings showing that DNA methylation levels are differentially regulated in the oligodendrocyte lineage during developmental myelination, affecting both genes expression and alternative splicing events. Based on the phenotypic characterization of mice with genetic ablation of DNA methyltransferase 1 (Dnmt1) we conclude that DNA methylation is critical for efficient OPC expansion and for developmental myelination. Previous work suggests that in the context of diseases such as multiple sclerosis (MS) or gliomas, DNA methylation is differentially regulated in the CNS of affected individuals compared with healthy controls. In this commentary, based on the results of previous work, we propose the potential role of DNA methylation in adult oligodendroglial lineage cells in physiologic and pathological conditions, and delineate potential research approaches to be undertaken to test this hypothesis. A better understanding of this epigenetic modification in adult oligodendrocyte progenitor cells is essential, as it can potentially result in the design of new therapeutic strategies to enhance remyelination in MS patients or reduce proliferation in glioma patients.","PeriodicalId":74274,"journal":{"name":"Neurogenesis (Austin, Tex.)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23262133.2016.1270381","citationCount":"20","resultStr":"{\"title\":\"DNA methylation in oligodendroglial cells during developmental myelination and in disease\",\"authors\":\"Sarah Moyon, P. Casaccia\",\"doi\":\"10.1080/23262133.2016.1270381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Oligodendrocyte progenitor cells (OPC) are the myelinating cells of the central nervous system (CNS). During development, they differentiate into mature oligodendrocytes (OL) and ensheath axons, providing trophic and functional support to the neurons. This process is regulated by the dynamic expression of specific transcription factors, which, in turn, is controlled by epigenetic marks such as DNA methylation. Here we discuss recent findings showing that DNA methylation levels are differentially regulated in the oligodendrocyte lineage during developmental myelination, affecting both genes expression and alternative splicing events. Based on the phenotypic characterization of mice with genetic ablation of DNA methyltransferase 1 (Dnmt1) we conclude that DNA methylation is critical for efficient OPC expansion and for developmental myelination. Previous work suggests that in the context of diseases such as multiple sclerosis (MS) or gliomas, DNA methylation is differentially regulated in the CNS of affected individuals compared with healthy controls. In this commentary, based on the results of previous work, we propose the potential role of DNA methylation in adult oligodendroglial lineage cells in physiologic and pathological conditions, and delineate potential research approaches to be undertaken to test this hypothesis. A better understanding of this epigenetic modification in adult oligodendrocyte progenitor cells is essential, as it can potentially result in the design of new therapeutic strategies to enhance remyelination in MS patients or reduce proliferation in glioma patients.\",\"PeriodicalId\":74274,\"journal\":{\"name\":\"Neurogenesis (Austin, Tex.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23262133.2016.1270381\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurogenesis (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23262133.2016.1270381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurogenesis (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23262133.2016.1270381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

少突胶质祖细胞(OPC)是中枢神经系统(CNS)的髓鞘形成细胞。在发育过程中,它们分化为成熟的少突胶质细胞(OL)并包裹轴突,为神经元提供营养和功能支持。这一过程受到特定转录因子的动态表达的调节,而这些转录因子又受到DNA甲基化等表观遗传学标记的控制。在这里,我们讨论了最近的发现,表明在发育髓鞘形成过程中,少突胶质细胞谱系中的DNA甲基化水平受到不同的调节,影响基因表达和选择性剪接事件。基于DNA甲基转移酶1(Dnmt1)基因切除小鼠的表型特征,我们得出结论,DNA甲基化对有效的OPC扩增和发育髓鞘形成至关重要。先前的研究表明,在多发性硬化症(MS)或胶质瘤等疾病的背景下,与健康对照组相比,受影响个体的中枢神经系统中DNA甲基化受到不同的调节。在这篇评论中,基于先前工作的结果,我们提出了DNA甲基化在生理和病理条件下成年少突胶质细胞谱系细胞中的潜在作用,并描述了验证这一假设的潜在研究方法。更好地了解成年少突胶质细胞祖细胞的这种表观遗传学修饰是至关重要的,因为它可能导致设计新的治疗策略,以增强多发性硬化症患者的髓鞘再形成或减少神经胶质瘤患者的增殖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA methylation in oligodendroglial cells during developmental myelination and in disease
ABSTRACT Oligodendrocyte progenitor cells (OPC) are the myelinating cells of the central nervous system (CNS). During development, they differentiate into mature oligodendrocytes (OL) and ensheath axons, providing trophic and functional support to the neurons. This process is regulated by the dynamic expression of specific transcription factors, which, in turn, is controlled by epigenetic marks such as DNA methylation. Here we discuss recent findings showing that DNA methylation levels are differentially regulated in the oligodendrocyte lineage during developmental myelination, affecting both genes expression and alternative splicing events. Based on the phenotypic characterization of mice with genetic ablation of DNA methyltransferase 1 (Dnmt1) we conclude that DNA methylation is critical for efficient OPC expansion and for developmental myelination. Previous work suggests that in the context of diseases such as multiple sclerosis (MS) or gliomas, DNA methylation is differentially regulated in the CNS of affected individuals compared with healthy controls. In this commentary, based on the results of previous work, we propose the potential role of DNA methylation in adult oligodendroglial lineage cells in physiologic and pathological conditions, and delineate potential research approaches to be undertaken to test this hypothesis. A better understanding of this epigenetic modification in adult oligodendrocyte progenitor cells is essential, as it can potentially result in the design of new therapeutic strategies to enhance remyelination in MS patients or reduce proliferation in glioma patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Role of neoblasts in the patterned postembryonic growth of the platyhelminth Macrostomum lignano. There's no place like home - HGF-c-MET signaling and melanocyte migration into the mammalian cochlea Effects of Isx-9 and stress on adult hippocampal neurogenesis: Experimental considerations and future perspectives. Opportunities lost and gained: Changes in progenitor competence during nervous system development. Endogenous Brain Repair: Overriding intrinsic lineage determinates through injury-induced micro-environmental signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1