变量误差加性模型的非参数估计

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2022-10-10 DOI:10.1080/07474938.2022.2127076
Hao Dong, Taisuke Otsu, L. Taylor
{"title":"变量误差加性模型的非参数估计","authors":"Hao Dong, Taisuke Otsu, L. Taylor","doi":"10.1080/07474938.2022.2127076","DOIUrl":null,"url":null,"abstract":"Abstract In the estimation of nonparametric additive models, conventional methods, such as backfitting and series approximation, cannot be applied when measurement error is present in a covariate. This paper proposes a two-stage estimator for such models. In the first stage, to adapt to the additive structure, we use a series approximation together with a ridge approach to deal with the ill-posedness brought by mismeasurement. We derive the uniform convergence rate of this first-stage estimator and characterize how the measurement error slows down the convergence rate for ordinary/super smooth cases. To establish the limiting distribution, we construct a second-stage estimator via one-step backfitting with a deconvolution kernel using the first-stage estimator. The asymptotic normality of the second-stage estimator is established for ordinary/super smooth measurement error cases. Finally, a Monte Carlo study and an empirical application highlight the applicability of the estimator.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"41 1","pages":"1164 - 1204"},"PeriodicalIF":0.8000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonparametric estimation of additive models with errors-in-variables\",\"authors\":\"Hao Dong, Taisuke Otsu, L. Taylor\",\"doi\":\"10.1080/07474938.2022.2127076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In the estimation of nonparametric additive models, conventional methods, such as backfitting and series approximation, cannot be applied when measurement error is present in a covariate. This paper proposes a two-stage estimator for such models. In the first stage, to adapt to the additive structure, we use a series approximation together with a ridge approach to deal with the ill-posedness brought by mismeasurement. We derive the uniform convergence rate of this first-stage estimator and characterize how the measurement error slows down the convergence rate for ordinary/super smooth cases. To establish the limiting distribution, we construct a second-stage estimator via one-step backfitting with a deconvolution kernel using the first-stage estimator. The asymptotic normality of the second-stage estimator is established for ordinary/super smooth measurement error cases. Finally, a Monte Carlo study and an empirical application highlight the applicability of the estimator.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"41 1\",\"pages\":\"1164 - 1204\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2022.2127076\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2022.2127076","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要在非参数加性模型的估计中,当协变量中存在测量误差时,传统的方法,如反拟合和序列近似,不能应用。本文提出了这类模型的两阶段估计器。在第一阶段,为了适应加性结构,我们采用了序列逼近和脊法来处理测量误差带来的不适定性。我们推导了该第一阶段估计器的一致收敛速率,并描述了测量误差如何减慢普通/超光滑情况下的收敛速率。为了建立极限分布,我们利用第一阶段估计量通过一步反拟合和反卷积核构造了第二阶段估计量。建立了普通/超光滑测量误差情况下二阶估计量的渐近正态性。最后,通过蒙特卡罗研究和实证应用表明了该估计量的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonparametric estimation of additive models with errors-in-variables
Abstract In the estimation of nonparametric additive models, conventional methods, such as backfitting and series approximation, cannot be applied when measurement error is present in a covariate. This paper proposes a two-stage estimator for such models. In the first stage, to adapt to the additive structure, we use a series approximation together with a ridge approach to deal with the ill-posedness brought by mismeasurement. We derive the uniform convergence rate of this first-stage estimator and characterize how the measurement error slows down the convergence rate for ordinary/super smooth cases. To establish the limiting distribution, we construct a second-stage estimator via one-step backfitting with a deconvolution kernel using the first-stage estimator. The asymptotic normality of the second-stage estimator is established for ordinary/super smooth measurement error cases. Finally, a Monte Carlo study and an empirical application highlight the applicability of the estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1