{"title":"淀粉酶-专注于来自古菌和植物的α淀粉酶","authors":"Š. Janeček","doi":"10.36547/nbc.1284","DOIUrl":null,"url":null,"abstract":"Amylolytic enzymes represent a group of starch hydrolases and related enzymes that are active towards the α-glycosidic bonds in starch and related poly- and oligosaccharides. The three best known amylolytic enzymes are α-amylase, β-amylase and glucoamylase that, however, differ from each other by their amino acid sequences, three-dimensional structures, reaction mechanisms and catalytic machineries. In the sequence-based classification of all glycoside hydrolases (GHs) they have therefore been classified into the three independent families: GH13 (α-amylases), GH14 (β-amylases) and GH15 (glucoamylases). Some amylolytic enzymes have been placed to the families GH31 and GH57. The family GH13 together with the families GH70 and GH77 constitutes the clan GH-H, well-known as the α-amylase family. It contains more than 6,000 sequences and covers 30 various enzyme specificities sharing the conserved sequence regions, catalytic TIM-barrel fold, retaining reaction mechanism and catalytic triad. Among the GH13 α-amylases, those produced by plants and archaebacteria exhibit common sequence similarities that distinguish them from the α-amylases of the remaining taxonomic sources. Despite the close evolutionary relatedness between the plant and archaeal α-amylases, there are also specific differences that discriminate them from each other. These specific differences could be used in an effort to reveal the sequence-structural features responsible for the high thermostability of the α-amylases from Archaea.","PeriodicalId":19210,"journal":{"name":"Nova Biotechnologica et Chimica","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Amylolytic enzymes - focus on the alpha-amylases from Archae and plants\",\"authors\":\"Š. Janeček\",\"doi\":\"10.36547/nbc.1284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Amylolytic enzymes represent a group of starch hydrolases and related enzymes that are active towards the α-glycosidic bonds in starch and related poly- and oligosaccharides. The three best known amylolytic enzymes are α-amylase, β-amylase and glucoamylase that, however, differ from each other by their amino acid sequences, three-dimensional structures, reaction mechanisms and catalytic machineries. In the sequence-based classification of all glycoside hydrolases (GHs) they have therefore been classified into the three independent families: GH13 (α-amylases), GH14 (β-amylases) and GH15 (glucoamylases). Some amylolytic enzymes have been placed to the families GH31 and GH57. The family GH13 together with the families GH70 and GH77 constitutes the clan GH-H, well-known as the α-amylase family. It contains more than 6,000 sequences and covers 30 various enzyme specificities sharing the conserved sequence regions, catalytic TIM-barrel fold, retaining reaction mechanism and catalytic triad. Among the GH13 α-amylases, those produced by plants and archaebacteria exhibit common sequence similarities that distinguish them from the α-amylases of the remaining taxonomic sources. Despite the close evolutionary relatedness between the plant and archaeal α-amylases, there are also specific differences that discriminate them from each other. These specific differences could be used in an effort to reveal the sequence-structural features responsible for the high thermostability of the α-amylases from Archaea.\",\"PeriodicalId\":19210,\"journal\":{\"name\":\"Nova Biotechnologica et Chimica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nova Biotechnologica et Chimica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36547/nbc.1284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nova Biotechnologica et Chimica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36547/nbc.1284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Amylolytic enzymes - focus on the alpha-amylases from Archae and plants
Amylolytic enzymes represent a group of starch hydrolases and related enzymes that are active towards the α-glycosidic bonds in starch and related poly- and oligosaccharides. The three best known amylolytic enzymes are α-amylase, β-amylase and glucoamylase that, however, differ from each other by their amino acid sequences, three-dimensional structures, reaction mechanisms and catalytic machineries. In the sequence-based classification of all glycoside hydrolases (GHs) they have therefore been classified into the three independent families: GH13 (α-amylases), GH14 (β-amylases) and GH15 (glucoamylases). Some amylolytic enzymes have been placed to the families GH31 and GH57. The family GH13 together with the families GH70 and GH77 constitutes the clan GH-H, well-known as the α-amylase family. It contains more than 6,000 sequences and covers 30 various enzyme specificities sharing the conserved sequence regions, catalytic TIM-barrel fold, retaining reaction mechanism and catalytic triad. Among the GH13 α-amylases, those produced by plants and archaebacteria exhibit common sequence similarities that distinguish them from the α-amylases of the remaining taxonomic sources. Despite the close evolutionary relatedness between the plant and archaeal α-amylases, there are also specific differences that discriminate them from each other. These specific differences could be used in an effort to reveal the sequence-structural features responsible for the high thermostability of the α-amylases from Archaea.