Z. Taha, Hafsa Jassim, Anas A. Ahmed, Ikhlas M. Farhan
{"title":"小型三频半模基片集成波导天线的设计与实现","authors":"Z. Taha, Hafsa Jassim, Anas A. Ahmed, Ikhlas M. Farhan","doi":"10.5614/itbj.ict.res.appl.2021.15.2.2","DOIUrl":null,"url":null,"abstract":"This study investigated structure strategies and exploratory scenarios for a half mode substrate integrated waveguide (HMSIW) antenna. The proposed antenna consists of three Hilbert cells, which are simulated by using CST programming. The antenna was manufactured with the realities of minor imperfections and high incorporation. The proposed structure offers a suitable substrate integrated waveguide (SIW) with about a decrease in size by half. In addition, Hilbert cells were added to realize the triple-band characteristics with good impedance matching, radiation patterns, and radiation performance. The antenna was fabricated on h = 1 mm thick dielectric substrate with dielectric constant (𝜀𝑟 = 4.3). The Hilbert cells were drilled on the top plane of the antenna substrate and fed using a microstrip transmission line. The proposed antenna is small, with a slot side length of approximately half of the guided wavelength. The three developed Hilbert cell HMSIW antenna resonates at 3.25, 5.94 and 6.5 GHz with a bandwidth of 2.97, 2.25 and 2.29% within a return loss of ‑38.77, ‑35.82 -23.35 dB, respectively. The results showed enhancements in antenna gain of 3.56, 4.97 and 6.43 dBi, with a radiation efficiency of -1.253, -0.493 and -0.586 dB, respectively.","PeriodicalId":42785,"journal":{"name":"Journal of ICT Research and Applications","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Design and Implementation of Triple Band Half Mode Substrate Integrated Waveguide (HMSIW) Antenna with Compact Size\",\"authors\":\"Z. Taha, Hafsa Jassim, Anas A. Ahmed, Ikhlas M. Farhan\",\"doi\":\"10.5614/itbj.ict.res.appl.2021.15.2.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigated structure strategies and exploratory scenarios for a half mode substrate integrated waveguide (HMSIW) antenna. The proposed antenna consists of three Hilbert cells, which are simulated by using CST programming. The antenna was manufactured with the realities of minor imperfections and high incorporation. The proposed structure offers a suitable substrate integrated waveguide (SIW) with about a decrease in size by half. In addition, Hilbert cells were added to realize the triple-band characteristics with good impedance matching, radiation patterns, and radiation performance. The antenna was fabricated on h = 1 mm thick dielectric substrate with dielectric constant (𝜀𝑟 = 4.3). The Hilbert cells were drilled on the top plane of the antenna substrate and fed using a microstrip transmission line. The proposed antenna is small, with a slot side length of approximately half of the guided wavelength. The three developed Hilbert cell HMSIW antenna resonates at 3.25, 5.94 and 6.5 GHz with a bandwidth of 2.97, 2.25 and 2.29% within a return loss of ‑38.77, ‑35.82 -23.35 dB, respectively. The results showed enhancements in antenna gain of 3.56, 4.97 and 6.43 dBi, with a radiation efficiency of -1.253, -0.493 and -0.586 dB, respectively.\",\"PeriodicalId\":42785,\"journal\":{\"name\":\"Journal of ICT Research and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ICT Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5614/itbj.ict.res.appl.2021.15.2.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ICT Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5614/itbj.ict.res.appl.2021.15.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Design and Implementation of Triple Band Half Mode Substrate Integrated Waveguide (HMSIW) Antenna with Compact Size
This study investigated structure strategies and exploratory scenarios for a half mode substrate integrated waveguide (HMSIW) antenna. The proposed antenna consists of three Hilbert cells, which are simulated by using CST programming. The antenna was manufactured with the realities of minor imperfections and high incorporation. The proposed structure offers a suitable substrate integrated waveguide (SIW) with about a decrease in size by half. In addition, Hilbert cells were added to realize the triple-band characteristics with good impedance matching, radiation patterns, and radiation performance. The antenna was fabricated on h = 1 mm thick dielectric substrate with dielectric constant (𝜀𝑟 = 4.3). The Hilbert cells were drilled on the top plane of the antenna substrate and fed using a microstrip transmission line. The proposed antenna is small, with a slot side length of approximately half of the guided wavelength. The three developed Hilbert cell HMSIW antenna resonates at 3.25, 5.94 and 6.5 GHz with a bandwidth of 2.97, 2.25 and 2.29% within a return loss of ‑38.77, ‑35.82 -23.35 dB, respectively. The results showed enhancements in antenna gain of 3.56, 4.97 and 6.43 dBi, with a radiation efficiency of -1.253, -0.493 and -0.586 dB, respectively.
期刊介绍:
Journal of ICT Research and Applications welcomes full research articles in the area of Information and Communication Technology from the following subject areas: Information Theory, Signal Processing, Electronics, Computer Network, Telecommunication, Wireless & Mobile Computing, Internet Technology, Multimedia, Software Engineering, Computer Science, Information System and Knowledge Management. Authors are invited to submit articles that have not been published previously and are not under consideration elsewhere.