红外热像仪应用于不溶性表面活性剂单层的表面压力测量

IF 3.7 3区 工程技术 Q1 INSTRUMENTS & INSTRUMENTATION Quantitative Infrared Thermography Journal Pub Date : 2021-10-29 DOI:10.1080/17686733.2021.1989181
N. Vinnichenko, A. Pushtaev, Y. Plaksina, A. Uvarov
{"title":"红外热像仪应用于不溶性表面活性剂单层的表面压力测量","authors":"N. Vinnichenko, A. Pushtaev, Y. Plaksina, A. Uvarov","doi":"10.1080/17686733.2021.1989181","DOIUrl":null,"url":null,"abstract":"ABSTRACT New experimental technique, based on IR thermography, is proposed to measure the surface pressure for dilute monomolecular films of surfactants on a liquid surface. The surfactant molecules are distributed unevenly along the surface, which leads to the formation of surface regions of two kinds. Part of the surface is covered with surfactant film, which suppresses the surface renewal and inhibits the heat transfer between the surface and the bulk liquid. Thus, these regions possess lower temperature compared to the rest of the surface, free of surfactant and exhibiting both buoyant and thermocapillary convection. High sensitivity of the modern IR cameras allows the measurement of the temperature difference between the surface regions, from which the surface pressure can be derived. Experiments with myristic acid are performed for different values of the surface temperature and mean concentration of the surfactant. The results demonstrate that it is possible to measure the surface pressure for liquid-expanded films with area per molecule up to . The derived parameters of 2D van der Waals gas are in agreement with published data . The proposed technique can also be used to compare the contamination level in dilute films of insoluble and soluble surfactants.","PeriodicalId":54525,"journal":{"name":"Quantitative Infrared Thermography Journal","volume":"20 1","pages":"1 - 13"},"PeriodicalIF":3.7000,"publicationDate":"2021-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Infrared thermography applied to the surface pressure measurements in insoluble surfactant monolayers\",\"authors\":\"N. Vinnichenko, A. Pushtaev, Y. Plaksina, A. Uvarov\",\"doi\":\"10.1080/17686733.2021.1989181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT New experimental technique, based on IR thermography, is proposed to measure the surface pressure for dilute monomolecular films of surfactants on a liquid surface. The surfactant molecules are distributed unevenly along the surface, which leads to the formation of surface regions of two kinds. Part of the surface is covered with surfactant film, which suppresses the surface renewal and inhibits the heat transfer between the surface and the bulk liquid. Thus, these regions possess lower temperature compared to the rest of the surface, free of surfactant and exhibiting both buoyant and thermocapillary convection. High sensitivity of the modern IR cameras allows the measurement of the temperature difference between the surface regions, from which the surface pressure can be derived. Experiments with myristic acid are performed for different values of the surface temperature and mean concentration of the surfactant. The results demonstrate that it is possible to measure the surface pressure for liquid-expanded films with area per molecule up to . The derived parameters of 2D van der Waals gas are in agreement with published data . The proposed technique can also be used to compare the contamination level in dilute films of insoluble and soluble surfactants.\",\"PeriodicalId\":54525,\"journal\":{\"name\":\"Quantitative Infrared Thermography Journal\",\"volume\":\"20 1\",\"pages\":\"1 - 13\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantitative Infrared Thermography Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17686733.2021.1989181\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Infrared Thermography Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17686733.2021.1989181","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 1

摘要

摘要:提出了一种基于红外热像仪测量表面活性剂稀单分子膜在液体表面表面压力的实验方法。表面活性剂分子沿表面分布不均匀,形成两种表面区域。部分表面被表面活性剂膜覆盖,抑制了表面更新,抑制了表面与散装液体之间的热传递。因此,与表面其他部分相比,这些区域具有较低的温度,没有表面活性剂,并表现出浮力和热毛细对流。现代红外相机的高灵敏度允许测量表面区域之间的温差,由此可以得出表面压力。在不同表面温度和表面活性剂的平均浓度下,用肉豆酱酸进行了实验。结果表明,测量每个分子面积为的液体膨胀膜的表面压力是可能的。导出的二维范德华气体的参数与已发表的数据一致。所提出的技术也可用于比较不溶性和可溶性表面活性剂稀释膜中的污染水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Infrared thermography applied to the surface pressure measurements in insoluble surfactant monolayers
ABSTRACT New experimental technique, based on IR thermography, is proposed to measure the surface pressure for dilute monomolecular films of surfactants on a liquid surface. The surfactant molecules are distributed unevenly along the surface, which leads to the formation of surface regions of two kinds. Part of the surface is covered with surfactant film, which suppresses the surface renewal and inhibits the heat transfer between the surface and the bulk liquid. Thus, these regions possess lower temperature compared to the rest of the surface, free of surfactant and exhibiting both buoyant and thermocapillary convection. High sensitivity of the modern IR cameras allows the measurement of the temperature difference between the surface regions, from which the surface pressure can be derived. Experiments with myristic acid are performed for different values of the surface temperature and mean concentration of the surfactant. The results demonstrate that it is possible to measure the surface pressure for liquid-expanded films with area per molecule up to . The derived parameters of 2D van der Waals gas are in agreement with published data . The proposed technique can also be used to compare the contamination level in dilute films of insoluble and soluble surfactants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantitative Infrared Thermography Journal
Quantitative Infrared Thermography Journal Physics and Astronomy-Instrumentation
CiteScore
6.80
自引率
12.00%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Quantitative InfraRed Thermography Journal (QIRT) provides a forum for industry and academia to discuss the latest developments of instrumentation, theoretical and experimental practices, data reduction, and image processing related to infrared thermography.
期刊最新文献
Automatic segmentation of microporous defects in composite film materials based on the improved attention U-Net module A deep learning based experimental framework for automatic staging of pressure ulcers from thermal images Enhancing the thermographic diagnosis of maxillary sinusitis using deep learning approach Review of unmanned aerial vehicle infrared thermography (UAV-IRT) applications in building thermal performance: towards the thermal performance evaluation of building envelope Evaluation of typical rail defects by induction thermography: experimental results and procedure for data analysis during high-speed laboratory testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1