比较和整合旧金山河口的鱼类调查:为什么不同的长期监测项目很重要

Q3 Agricultural and Biological Sciences San Francisco Estuary and Watershed Science Pub Date : 2020-06-07 DOI:10.15447/sfews.2020v18iss2art4
Dylan K. Stompe, P. Moyle, A. Kruger, J. Durand
{"title":"比较和整合旧金山河口的鱼类调查:为什么不同的长期监测项目很重要","authors":"Dylan K. Stompe, P. Moyle, A. Kruger, J. Durand","doi":"10.15447/sfews.2020v18iss2art4","DOIUrl":null,"url":null,"abstract":"Many fishes in the San Francisco Estuary have suffered declines in recent decades, as shown by numerous long-term monitoring programs. A long-term monitoring program, such as the Interagency Ecological Program, comprises a suite of surveys, each conducted by a state or federal agency or academic institution. These types of programs have produced rich data sets that are useful for tracking species trends over time. Problems arise from drawing conclusions based on one or few surveys because each survey samples a different subset of species or reflects different spatial or temporal trends in abundance. The challenges in using data sets from these surveys for comparative purposes stem from methodological differences, magnitude of data, incompatible data formats, and end-user preference for familiar surveys. To improve the utility of these data sets and encourage multi-survey analyses, we quantitatively rate these surveys based on their ability to represent species trends, present a methodology for integrating long-term data sets, and provide examples that highlight the importance of expanded analyses. We identify areas and species that are under-sampled, and compare fish salvage data from large water export facilities with survey data. Our analysis indicates that while surveys are redundant for some species, no two surveys are completely duplicative. Differing trends become evident when considering individual and aggregate survey data, because they imply spatial, seasonal, or gear-dependent catch. Our quantitative ratings and integrated data set allow for improved and better-informed comparisons of species trends across surveys, while highlighting the importance of the current array of sampling methodologies.","PeriodicalId":38364,"journal":{"name":"San Francisco Estuary and Watershed Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15447/sfews.2020v18iss2art4","citationCount":"19","resultStr":"{\"title\":\"Comparing and Integrating Fish Surveys in the San Francisco Estuary: Why Diverse Long-Term Monitoring Programs are Important\",\"authors\":\"Dylan K. Stompe, P. Moyle, A. Kruger, J. Durand\",\"doi\":\"10.15447/sfews.2020v18iss2art4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many fishes in the San Francisco Estuary have suffered declines in recent decades, as shown by numerous long-term monitoring programs. A long-term monitoring program, such as the Interagency Ecological Program, comprises a suite of surveys, each conducted by a state or federal agency or academic institution. These types of programs have produced rich data sets that are useful for tracking species trends over time. Problems arise from drawing conclusions based on one or few surveys because each survey samples a different subset of species or reflects different spatial or temporal trends in abundance. The challenges in using data sets from these surveys for comparative purposes stem from methodological differences, magnitude of data, incompatible data formats, and end-user preference for familiar surveys. To improve the utility of these data sets and encourage multi-survey analyses, we quantitatively rate these surveys based on their ability to represent species trends, present a methodology for integrating long-term data sets, and provide examples that highlight the importance of expanded analyses. We identify areas and species that are under-sampled, and compare fish salvage data from large water export facilities with survey data. Our analysis indicates that while surveys are redundant for some species, no two surveys are completely duplicative. Differing trends become evident when considering individual and aggregate survey data, because they imply spatial, seasonal, or gear-dependent catch. Our quantitative ratings and integrated data set allow for improved and better-informed comparisons of species trends across surveys, while highlighting the importance of the current array of sampling methodologies.\",\"PeriodicalId\":38364,\"journal\":{\"name\":\"San Francisco Estuary and Watershed Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15447/sfews.2020v18iss2art4\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"San Francisco Estuary and Watershed Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15447/sfews.2020v18iss2art4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"San Francisco Estuary and Watershed Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15447/sfews.2020v18iss2art4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 19

摘要

许多长期监测项目显示,近几十年来,旧金山河口的许多鱼类数量都在下降。长期监测项目,如跨部门生态项目,包括一系列调查,每项调查都由州或联邦机构或学术机构进行。这些类型的程序产生了丰富的数据集,这些数据集对跟踪物种随时间的变化趋势很有用。根据一次或几次调查得出结论会产生问题,因为每次调查取样的是不同的物种子集,或反映了不同的空间或时间趋势。将这些调查的数据集用于比较目的的挑战源于方法差异、数据量、不兼容的数据格式以及最终用户对熟悉调查的偏好。为了提高这些数据集的效用并鼓励多调查分析,我们基于它们代表物种趋势的能力对这些调查进行了定量评价,提出了一种整合长期数据集的方法,并提供了突出扩展分析重要性的示例。我们确定了采样不足的地区和物种,并将大型水出口设施的鱼类打捞数据与调查数据进行了比较。我们的分析表明,虽然对某些物种的调查是多余的,但没有两个调查是完全重复的。在考虑单个和总体调查数据时,不同的趋势变得明显,因为它们意味着空间、季节或渔具相关的捕获量。我们的定量评级和综合数据集允许在不同调查中对物种趋势进行改进和更明智的比较,同时强调当前一系列采样方法的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing and Integrating Fish Surveys in the San Francisco Estuary: Why Diverse Long-Term Monitoring Programs are Important
Many fishes in the San Francisco Estuary have suffered declines in recent decades, as shown by numerous long-term monitoring programs. A long-term monitoring program, such as the Interagency Ecological Program, comprises a suite of surveys, each conducted by a state or federal agency or academic institution. These types of programs have produced rich data sets that are useful for tracking species trends over time. Problems arise from drawing conclusions based on one or few surveys because each survey samples a different subset of species or reflects different spatial or temporal trends in abundance. The challenges in using data sets from these surveys for comparative purposes stem from methodological differences, magnitude of data, incompatible data formats, and end-user preference for familiar surveys. To improve the utility of these data sets and encourage multi-survey analyses, we quantitatively rate these surveys based on their ability to represent species trends, present a methodology for integrating long-term data sets, and provide examples that highlight the importance of expanded analyses. We identify areas and species that are under-sampled, and compare fish salvage data from large water export facilities with survey data. Our analysis indicates that while surveys are redundant for some species, no two surveys are completely duplicative. Differing trends become evident when considering individual and aggregate survey data, because they imply spatial, seasonal, or gear-dependent catch. Our quantitative ratings and integrated data set allow for improved and better-informed comparisons of species trends across surveys, while highlighting the importance of the current array of sampling methodologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
San Francisco Estuary and Watershed Science
San Francisco Estuary and Watershed Science Environmental Science-Water Science and Technology
CiteScore
2.90
自引率
0.00%
发文量
24
审稿时长
24 weeks
期刊最新文献
Regional Diversity Trends of Nearshore Fish Assemblages of the Upper San Francisco Estuary Sub-Lethal Responses of Delta Smelt to Contaminants Under Different Flow Conditions Spatial Patterns of Water Supply and Use in California Managed Wetlands for Climate Action: Potential Greenhouse Gas and Subsidence Mitigation in the Sacramento–San Joaquin Delta Proofing Field and Laboratory Species Identification Procedures Developed for the Non-Native Osmerid Species Wakasagi (Hypomesus nipponensis) Using SHERLOCK-Based Genetic Verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1