用协变量回归模型分析可靠性数据的转换毛刺X型分布

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2020-04-02 DOI:10.1080/01966324.2019.1605320
Muhammad Shuaib Khan, R. King, I. Hudson
{"title":"用协变量回归模型分析可靠性数据的转换毛刺X型分布","authors":"Muhammad Shuaib Khan, R. King, I. Hudson","doi":"10.1080/01966324.2019.1605320","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT This article investigates the potential usefulness of the three-parameter transmuted Burr type X (TBX) distribution for modeling reliability data, and explore its structural properties using simulation. Explicit expressions are derived for moments, incomplete moments, entropies, and mean deviation. The method of maximum likelihood is used for estimating the model parameters. We conduct Monte Carlo simulations, which are used to examine the relative performance of the estimators using MLE in terms of bias and mean square errors. A location-scale regression model based on the log-TBX distribution is proposed for modeling lifetime data. Use of this family of distributions is illustrated for fatigue fracture data and multiple myeloma patient’s data.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"121 - 99"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1605320","citationCount":"7","resultStr":"{\"title\":\"Transmuted Burr Type X Distribution with Covariates Regression Modeling to Analyze Reliability Data\",\"authors\":\"Muhammad Shuaib Khan, R. King, I. Hudson\",\"doi\":\"10.1080/01966324.2019.1605320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SYNOPTIC ABSTRACT This article investigates the potential usefulness of the three-parameter transmuted Burr type X (TBX) distribution for modeling reliability data, and explore its structural properties using simulation. Explicit expressions are derived for moments, incomplete moments, entropies, and mean deviation. The method of maximum likelihood is used for estimating the model parameters. We conduct Monte Carlo simulations, which are used to examine the relative performance of the estimators using MLE in terms of bias and mean square errors. A location-scale regression model based on the log-TBX distribution is proposed for modeling lifetime data. Use of this family of distributions is illustrated for fatigue fracture data and multiple myeloma patient’s data.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"39 1\",\"pages\":\"121 - 99\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2019.1605320\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2019.1605320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1605320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 7

摘要

摘要本文研究了三参数转换Burr类型X (TBX)分布在可靠性数据建模中的潜在用途,并通过仿真探讨了其结构特性。对矩、不完全矩、熵和平均偏差导出了显式表达式。采用极大似然法对模型参数进行估计。我们进行了蒙特卡罗模拟,用于检查使用MLE的估计器在偏差和均方误差方面的相对性能。提出了一种基于log-TBX分布的位置尺度回归模型,用于对寿命数据建模。在疲劳骨折数据和多发性骨髓瘤患者数据中使用该分布族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transmuted Burr Type X Distribution with Covariates Regression Modeling to Analyze Reliability Data
SYNOPTIC ABSTRACT This article investigates the potential usefulness of the three-parameter transmuted Burr type X (TBX) distribution for modeling reliability data, and explore its structural properties using simulation. Explicit expressions are derived for moments, incomplete moments, entropies, and mean deviation. The method of maximum likelihood is used for estimating the model parameters. We conduct Monte Carlo simulations, which are used to examine the relative performance of the estimators using MLE in terms of bias and mean square errors. A location-scale regression model based on the log-TBX distribution is proposed for modeling lifetime data. Use of this family of distributions is illustrated for fatigue fracture data and multiple myeloma patient’s data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1