{"title":"径向配电系统中可再生分布式电源精确配置的新型典型功率曲线生成方法","authors":"Ali Tarraq, F. El Mariami, Abdelaziz Belfqih","doi":"10.11591/ijece.v13i5.pp4909-4918","DOIUrl":null,"url":null,"abstract":"This paper investigates, for the first time, the accuracy of normalized power curves (NPCs), often used to incorporate uncertainties related to wind and solar power generation, when integrating renewable distributed generation (RDG), in the radial distribution system (RDS). In this regard, the present study proposes a comprehensive, simple, and more accurate model, for estimating the expected hourly solar and wind power generation, by adopting a purely probabilistic approach. Actually, in the case of solar RDG, the proposed model allows the calculation of the expected power, without going through a specific probability density function (PDF). The validation of this model is performed through a case study comparing between the classical and the proposed model. The results show that the proposed model generates seasonal NPCs in a less complex and more relevant way compared to the discrete classical model. Furthermore, the margin of error of the classical model for estimating the expected supplied energy is about 12.6% for the photovoltaic (PV) system, and 9% for the wind turbine (WT) system. This introduces an offset of about 10% when calculating the total active losses of the RDS after two RDGs integration.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New typical power curves generation approach for accurate renewable distributed generation placement in the radial distribution system\",\"authors\":\"Ali Tarraq, F. El Mariami, Abdelaziz Belfqih\",\"doi\":\"10.11591/ijece.v13i5.pp4909-4918\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates, for the first time, the accuracy of normalized power curves (NPCs), often used to incorporate uncertainties related to wind and solar power generation, when integrating renewable distributed generation (RDG), in the radial distribution system (RDS). In this regard, the present study proposes a comprehensive, simple, and more accurate model, for estimating the expected hourly solar and wind power generation, by adopting a purely probabilistic approach. Actually, in the case of solar RDG, the proposed model allows the calculation of the expected power, without going through a specific probability density function (PDF). The validation of this model is performed through a case study comparing between the classical and the proposed model. The results show that the proposed model generates seasonal NPCs in a less complex and more relevant way compared to the discrete classical model. Furthermore, the margin of error of the classical model for estimating the expected supplied energy is about 12.6% for the photovoltaic (PV) system, and 9% for the wind turbine (WT) system. This introduces an offset of about 10% when calculating the total active losses of the RDS after two RDGs integration.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp4909-4918\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp4909-4918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
New typical power curves generation approach for accurate renewable distributed generation placement in the radial distribution system
This paper investigates, for the first time, the accuracy of normalized power curves (NPCs), often used to incorporate uncertainties related to wind and solar power generation, when integrating renewable distributed generation (RDG), in the radial distribution system (RDS). In this regard, the present study proposes a comprehensive, simple, and more accurate model, for estimating the expected hourly solar and wind power generation, by adopting a purely probabilistic approach. Actually, in the case of solar RDG, the proposed model allows the calculation of the expected power, without going through a specific probability density function (PDF). The validation of this model is performed through a case study comparing between the classical and the proposed model. The results show that the proposed model generates seasonal NPCs in a less complex and more relevant way compared to the discrete classical model. Furthermore, the margin of error of the classical model for estimating the expected supplied energy is about 12.6% for the photovoltaic (PV) system, and 9% for the wind turbine (WT) system. This introduces an offset of about 10% when calculating the total active losses of the RDS after two RDGs integration.
期刊介绍:
International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]