基于聚类的b超图像笔角估计方法

IF 3.4 Q2 ENGINEERING, BIOMEDICAL Wearable technologies Pub Date : 2023-03-01 eCollection Date: 2023-01-01 DOI:10.1017/wtc.2022.30
Xuefeng Bao, Qiang Zhang, Natalie Fragnito, Jian Wang, Nitin Sharma
{"title":"基于聚类的b超图像笔角估计方法","authors":"Xuefeng Bao, Qiang Zhang, Natalie Fragnito, Jian Wang, Nitin Sharma","doi":"10.1017/wtc.2022.30","DOIUrl":null,"url":null,"abstract":"<p><p>B-mode ultrasound (US) is often used to noninvasively measure skeletal muscle architecture, which contains human intent information. Extracted features from B-mode images can help improve closed-loop human-robotic interaction control when using rehabilitation/assistive devices. The traditional manual approach to inferring the muscle structural features from US images is laborious, time-consuming, and subjective among different investigators. This paper proposes a clustering-based detection method that can mimic a well-trained human expert in identifying fascicle and aponeurosis and, therefore, compute the pennation angle. The clustering-based architecture assumes that muscle fibers have tubular characteristics. It is robust for low-frequency image streams. We compared the proposed algorithm to two mature benchmark techniques: <i>UltraTrack</i> and <i>ImageJ.</i> The performance of the proposed approach showed higher accuracy in our dataset (frame frequency is 20 Hz), that is, similar to the human expert. The proposed method shows promising potential in automatic muscle fascicle orientation detection to facilitate implementations in biomechanics modeling, rehabilitation robot control design, and neuromuscular disease diagnosis with low-frequency data stream.</p>","PeriodicalId":75318,"journal":{"name":"Wearable technologies","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936288/pdf/","citationCount":"0","resultStr":"{\"title\":\"A clustering-based method for estimating pennation angle from B-mode ultrasound images.\",\"authors\":\"Xuefeng Bao, Qiang Zhang, Natalie Fragnito, Jian Wang, Nitin Sharma\",\"doi\":\"10.1017/wtc.2022.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>B-mode ultrasound (US) is often used to noninvasively measure skeletal muscle architecture, which contains human intent information. Extracted features from B-mode images can help improve closed-loop human-robotic interaction control when using rehabilitation/assistive devices. The traditional manual approach to inferring the muscle structural features from US images is laborious, time-consuming, and subjective among different investigators. This paper proposes a clustering-based detection method that can mimic a well-trained human expert in identifying fascicle and aponeurosis and, therefore, compute the pennation angle. The clustering-based architecture assumes that muscle fibers have tubular characteristics. It is robust for low-frequency image streams. We compared the proposed algorithm to two mature benchmark techniques: <i>UltraTrack</i> and <i>ImageJ.</i> The performance of the proposed approach showed higher accuracy in our dataset (frame frequency is 20 Hz), that is, similar to the human expert. The proposed method shows promising potential in automatic muscle fascicle orientation detection to facilitate implementations in biomechanics modeling, rehabilitation robot control design, and neuromuscular disease diagnosis with low-frequency data stream.</p>\",\"PeriodicalId\":75318,\"journal\":{\"name\":\"Wearable technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10936288/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wearable technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/wtc.2022.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wearable technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wtc.2022.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要B型超声(US)通常用于无创测量骨骼肌结构,其中包含人类意图信息。从B模式图像中提取的特征有助于在使用康复/辅助设备时改善闭环人机交互控制。从美国图像推断肌肉结构特征的传统手动方法在不同的研究人员中是费力、耗时和主观的。本文提出了一种基于聚类的检测方法,该方法可以模仿训练有素的人类专家来识别神经束和神经膜,从而计算三角。基于聚类的体系结构假设肌肉纤维具有管状特征。它对低频图像流是鲁棒的。我们将所提出的算法与两种成熟的基准技术:UltraTrack和ImageJ进行了比较。所提出的方法的性能在我们的数据集中显示出更高的精度(帧频为20Hz),也就是说,与人类专家类似。所提出的方法在自动肌束方向检测方面显示出了很好的潜力,有助于生物力学建模、康复机器人控制设计和低频数据流神经肌肉疾病诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A clustering-based method for estimating pennation angle from B-mode ultrasound images.

B-mode ultrasound (US) is often used to noninvasively measure skeletal muscle architecture, which contains human intent information. Extracted features from B-mode images can help improve closed-loop human-robotic interaction control when using rehabilitation/assistive devices. The traditional manual approach to inferring the muscle structural features from US images is laborious, time-consuming, and subjective among different investigators. This paper proposes a clustering-based detection method that can mimic a well-trained human expert in identifying fascicle and aponeurosis and, therefore, compute the pennation angle. The clustering-based architecture assumes that muscle fibers have tubular characteristics. It is robust for low-frequency image streams. We compared the proposed algorithm to two mature benchmark techniques: UltraTrack and ImageJ. The performance of the proposed approach showed higher accuracy in our dataset (frame frequency is 20 Hz), that is, similar to the human expert. The proposed method shows promising potential in automatic muscle fascicle orientation detection to facilitate implementations in biomechanics modeling, rehabilitation robot control design, and neuromuscular disease diagnosis with low-frequency data stream.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Concurrent validity of inertial measurement units in range of motion measurements of upper extremity: A systematic review and meta-analysis. Acute suppression of lower limb spasm by sacral afferent stimulation for people with spinal cord injury: A pilot study GLULA: Linear attention-based model for efficient human activity recognition from wearable sensors Erratum: Validity of estimating center of pressure during walking and running with plantar load from a three-sensor wireless insole - ERRATUM. A novel neck brace to characterize neck mobility impairments following neck dissection in head and neck cancer patients - ADDENDUM.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1