分布式云平台中基于蒸汽的随机需求的有效资源部署方法

IF 0.5 Q4 ENGINEERING, MULTIDISCIPLINARY International Journal of Computing Science and Mathematics Pub Date : 2020-12-10 DOI:10.1504/ijcsm.2020.10034029
Yang Liu, Wei Wei, Heyang Xu
{"title":"分布式云平台中基于蒸汽的随机需求的有效资源部署方法","authors":"Yang Liu, Wei Wei, Heyang Xu","doi":"10.1504/ijcsm.2020.10034029","DOIUrl":null,"url":null,"abstract":"It has been a consensus that deploying geographically dispersed stream-based online services into distributed cloud platforms has gained exceptional advantages. Globally visiting services make user requests characterised with dramatic fluctuation, which introduces stochastic demands for various resources. In order to maximise satisfied user requests and guarantee quality-of-service under given expense budget, efficient resource deployment becomes the key to this problem. We propose a stochastic demand oriented resource deployment method with more profits and less time complexity. Experiments using simulated and realistic data indicate that proposed method can outperform existing algorithms by increasing the weighted summation of satisfied demands up to 37%, fit for all scenarios with heterogeneous distributed cloud resources.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"12 1","pages":"205-215"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An efficient resource deployment method for steam- based stochastic demands in distributed cloud platforms\",\"authors\":\"Yang Liu, Wei Wei, Heyang Xu\",\"doi\":\"10.1504/ijcsm.2020.10034029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been a consensus that deploying geographically dispersed stream-based online services into distributed cloud platforms has gained exceptional advantages. Globally visiting services make user requests characterised with dramatic fluctuation, which introduces stochastic demands for various resources. In order to maximise satisfied user requests and guarantee quality-of-service under given expense budget, efficient resource deployment becomes the key to this problem. We propose a stochastic demand oriented resource deployment method with more profits and less time complexity. Experiments using simulated and realistic data indicate that proposed method can outperform existing algorithms by increasing the weighted summation of satisfied demands up to 37%, fit for all scenarios with heterogeneous distributed cloud resources.\",\"PeriodicalId\":45487,\"journal\":{\"name\":\"International Journal of Computing Science and Mathematics\",\"volume\":\"12 1\",\"pages\":\"205-215\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computing Science and Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcsm.2020.10034029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2020.10034029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

人们一致认为,将地理上分散的基于流的在线服务部署到分布式云平台中获得了非凡的优势。全球访问服务使用户请求具有急剧波动的特征,这引入了对各种资源的随机需求。为了在给定的费用预算下最大限度地满足用户需求并保证服务质量,高效的资源部署成为解决这一问题的关键。我们提出了一种面向随机需求的资源部署方法,该方法具有更高的利润和更低的时间复杂性。使用模拟和现实数据进行的实验表明,该方法可以将满足需求的加权总和提高到37%,从而优于现有算法,适用于异构分布式云资源的所有场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient resource deployment method for steam- based stochastic demands in distributed cloud platforms
It has been a consensus that deploying geographically dispersed stream-based online services into distributed cloud platforms has gained exceptional advantages. Globally visiting services make user requests characterised with dramatic fluctuation, which introduces stochastic demands for various resources. In order to maximise satisfied user requests and guarantee quality-of-service under given expense budget, efficient resource deployment becomes the key to this problem. We propose a stochastic demand oriented resource deployment method with more profits and less time complexity. Experiments using simulated and realistic data indicate that proposed method can outperform existing algorithms by increasing the weighted summation of satisfied demands up to 37%, fit for all scenarios with heterogeneous distributed cloud resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
37
期刊最新文献
Application of hybrid genetic algorithm based on travelling salesman problem in rural tourism route planning Non-destructive Diagnosis of Knee Osteoarthritis Based on Sparse Coding of MRI Hierarchical neural network detection model based on deep context and attention mechanism Particle resolved direct numerical simulation of heat transfer in gas-solid flows Research on bilingual text similarity detection and analysis based on improved fragment merging algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1