{"title":"先验通过虚构的训练样本获得足够的统计量进行客观的贝叶斯假设检验","authors":"D. Fouskakis","doi":"10.1007/s40300-019-00159-0","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":51716,"journal":{"name":"Metron-International Journal of Statistics","volume":"77 1","pages":"179 - 199"},"PeriodicalIF":0.7000,"publicationDate":"2019-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40300-019-00159-0","citationCount":"1","resultStr":"{\"title\":\"Priors via imaginary training samples of sufficient statistics for objective Bayesian hypothesis testing\",\"authors\":\"D. Fouskakis\",\"doi\":\"10.1007/s40300-019-00159-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":51716,\"journal\":{\"name\":\"Metron-International Journal of Statistics\",\"volume\":\"77 1\",\"pages\":\"179 - 199\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40300-019-00159-0\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metron-International Journal of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40300-019-00159-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metron-International Journal of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40300-019-00159-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
期刊介绍:
METRON welcomes original articles on statistical methodology, statistical applications, or discussions of results achieved by statistical methods in different branches of science.