在广义Stein损失函数下估计选定Pareto总体的尺度参数

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2021-03-19 DOI:10.1080/01966324.2021.1891999
K. R. Meena, Aditi Kar Gangopadhyay, Omer Abdalghani
{"title":"在广义Stein损失函数下估计选定Pareto总体的尺度参数","authors":"K. R. Meena, Aditi Kar Gangopadhyay, Omer Abdalghani","doi":"10.1080/01966324.2021.1891999","DOIUrl":null,"url":null,"abstract":"Abstract The problem of estimation after selection can be seen in numerous statistical applications. Let be a random sample drawn from the population where Π i follows Pareto distribution with an unknown scale parameter θi and common known shape parameter β. This article is concerned with the problem of estimating θL (or θS ), the scale parameter of the selected Pareto population under the generalized Stein loss function. The uniformly minimum risk unbiased (UMRU) estimators of θL and θS , scale parameters of the largest and the smallest population respectively, are determined. For k = 2, we have obtained a sufficient condition of minimaxity of θS and showed that the generalized Bayes estimator of θS is a minimax estimator for k = 2. Also, a class of linear admissible estimators of the form of θL and θS is found, and a sufficient condition for inadmissibility is provided. Further, we demonstrate that the UMRU estimator of θS is inadmissible. A comparison between the proposed estimators is conducted using MATLAB software and a real data set is analyzed for illustrative purposes. Finally, conclusions and discussion are reported.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"40 1","pages":"357 - 377"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2021.1891999","citationCount":"3","resultStr":"{\"title\":\"On Estimating Scale Parameter of the Selected Pareto Population under the Generalized Stein Loss Function\",\"authors\":\"K. R. Meena, Aditi Kar Gangopadhyay, Omer Abdalghani\",\"doi\":\"10.1080/01966324.2021.1891999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The problem of estimation after selection can be seen in numerous statistical applications. Let be a random sample drawn from the population where Π i follows Pareto distribution with an unknown scale parameter θi and common known shape parameter β. This article is concerned with the problem of estimating θL (or θS ), the scale parameter of the selected Pareto population under the generalized Stein loss function. The uniformly minimum risk unbiased (UMRU) estimators of θL and θS , scale parameters of the largest and the smallest population respectively, are determined. For k = 2, we have obtained a sufficient condition of minimaxity of θS and showed that the generalized Bayes estimator of θS is a minimax estimator for k = 2. Also, a class of linear admissible estimators of the form of θL and θS is found, and a sufficient condition for inadmissibility is provided. Further, we demonstrate that the UMRU estimator of θS is inadmissible. A comparison between the proposed estimators is conducted using MATLAB software and a real data set is analyzed for illustrative purposes. Finally, conclusions and discussion are reported.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"40 1\",\"pages\":\"357 - 377\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2021.1891999\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2021.1891999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2021.1891999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 3

摘要

摘要选择后的估计问题可以在许多统计学应用中看到。设为从总体中抽取的随机样本,其中πi遵循帕累托分布,具有未知的尺度参数θi和常见的已知形状参数β。本文讨论了在广义Stein损失函数下估计所选Pareto总体的尺度参数θL(或θS)的问题。确定了最大和最小群体的尺度参数θL和θS的一致最小风险无偏估计量。对于k = 2,我们得到了θS极小的一个充分条件,并证明了θS的广义Bayes估计量是k的极大极小估计量 = 2.还发现了一类θL和θS形式的线性可容许估计量,并给出了不可容许的一个充分条件。此外,我们证明了θS的UMRU估计量是不可接受的。使用MATLAB软件对所提出的估计量进行了比较,并分析了实际数据集以便于说明。最后,报告了结论和讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On Estimating Scale Parameter of the Selected Pareto Population under the Generalized Stein Loss Function
Abstract The problem of estimation after selection can be seen in numerous statistical applications. Let be a random sample drawn from the population where Π i follows Pareto distribution with an unknown scale parameter θi and common known shape parameter β. This article is concerned with the problem of estimating θL (or θS ), the scale parameter of the selected Pareto population under the generalized Stein loss function. The uniformly minimum risk unbiased (UMRU) estimators of θL and θS , scale parameters of the largest and the smallest population respectively, are determined. For k = 2, we have obtained a sufficient condition of minimaxity of θS and showed that the generalized Bayes estimator of θS is a minimax estimator for k = 2. Also, a class of linear admissible estimators of the form of θL and θS is found, and a sufficient condition for inadmissibility is provided. Further, we demonstrate that the UMRU estimator of θS is inadmissible. A comparison between the proposed estimators is conducted using MATLAB software and a real data set is analyzed for illustrative purposes. Finally, conclusions and discussion are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1