按中国规范设计的钢筋混凝土框架结构的地震损失风险评估

IF 1.4 4区 工程技术 Q3 ENGINEERING, CIVIL Earthquakes and Structures Pub Date : 2021-05-01 DOI:10.12989/EAS.2021.20.5.571
Shuhe Wang, Ximing Li, Jubing Zhang
{"title":"按中国规范设计的钢筋混凝土框架结构的地震损失风险评估","authors":"Shuhe Wang, Ximing Li, Jubing Zhang","doi":"10.12989/EAS.2021.20.5.571","DOIUrl":null,"url":null,"abstract":"According to the PEER probabilistic seismic loss assessment methodology, a structure-level seismic risk assessment method was proposed and implemented for a set of RC frames designed according to Chinese seismic code. These frames were designed for fortification intensities of 6,7 and 8 and classified into 4,6 and 8 stories. Through incremental dynamic time history analysis (IDA), the statistical relationships of the maximum inter-story drift ratio with the seismic spectral acceleration were obtained and used to determine fragility curve for each damage states. The site seismic hazard model was established based on Chinese seismic code, and the probability distribution of each discrete intensity levels was derived. Using loss index from the Chinese standard and Hazus, the structure means annual frequency of collapse, the Expected Annual Financial Loss (EAL) and the Expected Annual Fatalities (EAF) were calculated. The variation trends of these performance metrics with seismic fortification intensities and structure heights were evaluated, and the weaknesses of the current seismic code of China were pointed out. It was concluded that the method proposed in this paper is simple and reliable for practical applications.","PeriodicalId":49080,"journal":{"name":"Earthquakes and Structures","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Seismic loss risk assessment of RC frame structures designed according to Chinese code\",\"authors\":\"Shuhe Wang, Ximing Li, Jubing Zhang\",\"doi\":\"10.12989/EAS.2021.20.5.571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the PEER probabilistic seismic loss assessment methodology, a structure-level seismic risk assessment method was proposed and implemented for a set of RC frames designed according to Chinese seismic code. These frames were designed for fortification intensities of 6,7 and 8 and classified into 4,6 and 8 stories. Through incremental dynamic time history analysis (IDA), the statistical relationships of the maximum inter-story drift ratio with the seismic spectral acceleration were obtained and used to determine fragility curve for each damage states. The site seismic hazard model was established based on Chinese seismic code, and the probability distribution of each discrete intensity levels was derived. Using loss index from the Chinese standard and Hazus, the structure means annual frequency of collapse, the Expected Annual Financial Loss (EAL) and the Expected Annual Fatalities (EAF) were calculated. The variation trends of these performance metrics with seismic fortification intensities and structure heights were evaluated, and the weaknesses of the current seismic code of China were pointed out. It was concluded that the method proposed in this paper is simple and reliable for practical applications.\",\"PeriodicalId\":49080,\"journal\":{\"name\":\"Earthquakes and Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquakes and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/EAS.2021.20.5.571\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquakes and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/EAS.2021.20.5.571","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

根据PEER概率地震损失评估方法,提出并实现了一组按中国抗震规范设计的钢筋混凝土框架的结构级地震风险评估方法。这些框架设计为防御强度为6,7和8,分为4,6和8层。通过增量动力时程分析(IDA),得到了最大层间位移比与地震谱加速度的统计关系,并用于确定各损伤状态的易损性曲线。根据中国抗震规范建立了场地地震危险性模型,推导了各离散烈度的概率分布。利用中国标准和Hazus中的损失指数,计算了结构均值年倒塌频率、预计年经济损失(EAL)和预计年死亡人数(EAF)。评价了这些性能指标随抗震设防烈度和结构高度的变化趋势,指出了中国现行抗震规范的不足之处。结果表明,本文提出的方法简单可靠,可用于实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic loss risk assessment of RC frame structures designed according to Chinese code
According to the PEER probabilistic seismic loss assessment methodology, a structure-level seismic risk assessment method was proposed and implemented for a set of RC frames designed according to Chinese seismic code. These frames were designed for fortification intensities of 6,7 and 8 and classified into 4,6 and 8 stories. Through incremental dynamic time history analysis (IDA), the statistical relationships of the maximum inter-story drift ratio with the seismic spectral acceleration were obtained and used to determine fragility curve for each damage states. The site seismic hazard model was established based on Chinese seismic code, and the probability distribution of each discrete intensity levels was derived. Using loss index from the Chinese standard and Hazus, the structure means annual frequency of collapse, the Expected Annual Financial Loss (EAL) and the Expected Annual Fatalities (EAF) were calculated. The variation trends of these performance metrics with seismic fortification intensities and structure heights were evaluated, and the weaknesses of the current seismic code of China were pointed out. It was concluded that the method proposed in this paper is simple and reliable for practical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earthquakes and Structures
Earthquakes and Structures ENGINEERING, CIVIL-ENGINEERING, GEOLOGICAL
CiteScore
2.90
自引率
20.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: The Earthquakes and Structures, An International Journal, focuses on the effects of earthquakes on civil engineering structures. The journal will serve as a powerful repository of technical information and will provide a highimpact publication platform for the global community of researchers in the traditional, as well as emerging, subdisciplines of the broader earthquake engineering field. Specifically, some of the major topics covered by the Journal include: .. characterization of strong ground motions, .. quantification of earthquake demand and structural capacity, .. design of earthquake resistant structures and foundations, .. experimental and computational methods, .. seismic regulations and building codes, .. seismic hazard assessment, .. seismic risk mitigation, .. site effects and soil-structure interaction, .. assessment, repair and strengthening of existing structures, including historic structures and monuments, and .. emerging technologies including passive control technologies, structural monitoring systems, and cyberinfrastructure tools for seismic data management, experimental applications, early warning and response
期刊最新文献
Seismic behaviour of dams to near fault and far fault ground motions: A state of the art review Mathematical model and results for seismicresponses of a nonlinear isolation system Base-isolated steel structure with spring limitersunder near-fault earthquakes: Experiment Seismic performance assessment of code-conforming precast reinforced concrete frames in China Seismic Site Classification from HVSR Data using the Rayleigh wave ellipticity inversion: A case study in Singapore
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1