{"title":"无限状态系统的可扩展证明系统","authors":"J. Keiren, R. Cleaveland","doi":"10.48550/arXiv.2207.12953","DOIUrl":null,"url":null,"abstract":"This paper revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus in order to develop proof techniques that permit the seamless inclusion of new features in this logic. Our approach relies on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reason about the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableau method is sound and complete for timed transition systems.","PeriodicalId":50916,"journal":{"name":"ACM Transactions on Computational Logic","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2022-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Extensible Proof Systems for Infinite-State Systems\",\"authors\":\"J. Keiren, R. Cleaveland\",\"doi\":\"10.48550/arXiv.2207.12953\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus in order to develop proof techniques that permit the seamless inclusion of new features in this logic. Our approach relies on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reason about the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableau method is sound and complete for timed transition systems.\",\"PeriodicalId\":50916,\"journal\":{\"name\":\"ACM Transactions on Computational Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computational Logic\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2207.12953\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computational Logic","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2207.12953","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Extensible Proof Systems for Infinite-State Systems
This paper revisits soundness and completeness of proof systems for proving that sets of states in infinite-state labeled transition systems satisfy formulas in the modal mu-calculus in order to develop proof techniques that permit the seamless inclusion of new features in this logic. Our approach relies on novel results in lattice theory, which give constructive characterizations of both greatest and least fixpoints of monotonic functions over complete lattices. We show how these results may be used to reason about the sound and complete tableau method for this problem due to Bradfield and Stirling. We also show how the flexibility of our lattice-theoretic basis simplifies reasoning about tableau-based proof strategies for alternative classes of systems. In particular, we extend the modal mu-calculus with timed modalities, and prove that the resulting tableau method is sound and complete for timed transition systems.
期刊介绍:
TOCL welcomes submissions related to all aspects of logic as it pertains to topics in computer science. This area has a great tradition in computer science. Several researchers who earned the ACM Turing award have also contributed to this field, namely Edgar Codd (relational database systems), Stephen Cook (complexity of logical theories), Edsger W. Dijkstra, Robert W. Floyd, Tony Hoare, Amir Pnueli, Dana Scott, Edmond M. Clarke, Allen E. Emerson, and Joseph Sifakis (program logics, program derivation and verification, programming languages semantics), Robin Milner (interactive theorem proving, concurrency calculi, and functional programming), and John McCarthy (functional programming and logics in AI).
Logic continues to play an important role in computer science and has permeated several of its areas, including artificial intelligence, computational complexity, database systems, and programming languages.
The Editorial Board of this journal seeks and hopes to attract high-quality submissions in all the above-mentioned areas of computational logic so that TOCL becomes the standard reference in the field.
Both theoretical and applied papers are sought. Submissions showing novel use of logic in computer science are especially welcome.