Zohra Bouzidi, L. Terrissa, N. Zerhouni, Soheyb Ayad
{"title":"云预测系统QoS在航空发动机机群中的应用","authors":"Zohra Bouzidi, L. Terrissa, N. Zerhouni, Soheyb Ayad","doi":"10.1504/ejie.2020.105080","DOIUrl":null,"url":null,"abstract":"Recently, prognostics and health management (PHM) solutions are increasingly implemented in order to complete maintenance activities. The prognostic process in industrial maintenance is the main step to predict failures before they occur by determining the remaining useful life (RUL) of the equipment. However, it also poses challenges such as reliability, availability, infrastructure and physics servers. To address these challenges, this paper investigates a cloud-based prognostic system of an aircraft engine based on artificial intelligence methods. We design and implement an architecture that defines an approach that is prognostic as a service (Prognostic aaS) using a data-driven approach. This approach will provide a suitable and efficient PHM solution as a service via internet, on the demand of a client, in accordance with a service level agreement (SLA) contract drawn up in advance to ensure a better quality of service and pay this service per use (pay as you go). We estimated the RUL of aircraft engines fleet by implementing three techniques. Next, we studied the performance of this system; the efficient method was concluded. In addition, we discussed the quality of service (QoS) for the cloud prognostic application according to the factors of quality. [Received: 19 May 2018; Revised: 10 August 2018; Revised: 31 August 2018; Revised: 21 March 2019; Accepted: 28 March 2019]","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ejie.2020.105080","citationCount":"4","resultStr":"{\"title\":\"QoS of cloud prognostic system: application to aircraft engines fleet\",\"authors\":\"Zohra Bouzidi, L. Terrissa, N. Zerhouni, Soheyb Ayad\",\"doi\":\"10.1504/ejie.2020.105080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, prognostics and health management (PHM) solutions are increasingly implemented in order to complete maintenance activities. The prognostic process in industrial maintenance is the main step to predict failures before they occur by determining the remaining useful life (RUL) of the equipment. However, it also poses challenges such as reliability, availability, infrastructure and physics servers. To address these challenges, this paper investigates a cloud-based prognostic system of an aircraft engine based on artificial intelligence methods. We design and implement an architecture that defines an approach that is prognostic as a service (Prognostic aaS) using a data-driven approach. This approach will provide a suitable and efficient PHM solution as a service via internet, on the demand of a client, in accordance with a service level agreement (SLA) contract drawn up in advance to ensure a better quality of service and pay this service per use (pay as you go). We estimated the RUL of aircraft engines fleet by implementing three techniques. Next, we studied the performance of this system; the efficient method was concluded. In addition, we discussed the quality of service (QoS) for the cloud prognostic application according to the factors of quality. [Received: 19 May 2018; Revised: 10 August 2018; Revised: 31 August 2018; Revised: 21 March 2019; Accepted: 28 March 2019]\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ejie.2020.105080\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1504/ejie.2020.105080\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/ejie.2020.105080","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
QoS of cloud prognostic system: application to aircraft engines fleet
Recently, prognostics and health management (PHM) solutions are increasingly implemented in order to complete maintenance activities. The prognostic process in industrial maintenance is the main step to predict failures before they occur by determining the remaining useful life (RUL) of the equipment. However, it also poses challenges such as reliability, availability, infrastructure and physics servers. To address these challenges, this paper investigates a cloud-based prognostic system of an aircraft engine based on artificial intelligence methods. We design and implement an architecture that defines an approach that is prognostic as a service (Prognostic aaS) using a data-driven approach. This approach will provide a suitable and efficient PHM solution as a service via internet, on the demand of a client, in accordance with a service level agreement (SLA) contract drawn up in advance to ensure a better quality of service and pay this service per use (pay as you go). We estimated the RUL of aircraft engines fleet by implementing three techniques. Next, we studied the performance of this system; the efficient method was concluded. In addition, we discussed the quality of service (QoS) for the cloud prognostic application according to the factors of quality. [Received: 19 May 2018; Revised: 10 August 2018; Revised: 31 August 2018; Revised: 21 March 2019; Accepted: 28 March 2019]
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.