准实验设计

M. Maciejewski
{"title":"准实验设计","authors":"M. Maciejewski","doi":"10.1080/24709360.2018.1477468","DOIUrl":null,"url":null,"abstract":"ABSTRACT Quasi-experiments are similar to randomized controlled trials in many respects, but there are many challenges in designing and conducting a quasi-experiment when internal validity threats are introduced from the absence of randomization. This paper outlines design, measurement and statistical issues that must be considered prior to the conduct of a quasi-experimental evaluation. We discuss challenges for the internal validity of quasi-experimental designs, inclusion/exclusion criteria, treatment and comparator cohort definitions, and the five types of explanatory variables that one must classify prior to analysis. We discuss data collection and confidentiality, statistical power and conclude with analytic issues that one must consider.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"4 1","pages":"38 - 47"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24709360.2018.1477468","citationCount":"31","resultStr":"{\"title\":\"Quasi-experimental design\",\"authors\":\"M. Maciejewski\",\"doi\":\"10.1080/24709360.2018.1477468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Quasi-experiments are similar to randomized controlled trials in many respects, but there are many challenges in designing and conducting a quasi-experiment when internal validity threats are introduced from the absence of randomization. This paper outlines design, measurement and statistical issues that must be considered prior to the conduct of a quasi-experimental evaluation. We discuss challenges for the internal validity of quasi-experimental designs, inclusion/exclusion criteria, treatment and comparator cohort definitions, and the five types of explanatory variables that one must classify prior to analysis. We discuss data collection and confidentiality, statistical power and conclude with analytic issues that one must consider.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"4 1\",\"pages\":\"38 - 47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24709360.2018.1477468\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2018.1477468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2018.1477468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 31

摘要

摘要准实验在许多方面与随机对照试验相似,但当由于缺乏随机化而引入内部有效性威胁时,在设计和进行准实验方面存在许多挑战。本文概述了在进行准实验评估之前必须考虑的设计、测量和统计问题。我们讨论了准实验设计的内部有效性、纳入/排除标准、治疗和对照队列定义以及分析前必须分类的五种解释变量的挑战。我们讨论了数据收集和保密性、统计能力,并以必须考虑的分析问题作为结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quasi-experimental design
ABSTRACT Quasi-experiments are similar to randomized controlled trials in many respects, but there are many challenges in designing and conducting a quasi-experiment when internal validity threats are introduced from the absence of randomization. This paper outlines design, measurement and statistical issues that must be considered prior to the conduct of a quasi-experimental evaluation. We discuss challenges for the internal validity of quasi-experimental designs, inclusion/exclusion criteria, treatment and comparator cohort definitions, and the five types of explanatory variables that one must classify prior to analysis. We discuss data collection and confidentiality, statistical power and conclude with analytic issues that one must consider.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
期刊最新文献
Adjusting for bias due to measurement error in functional quantile regression models with error-prone functional and scalar covariates. The analysis of Salmonella’s ability to survive in different external environments Notice of duplicate publication: public transportation network scan for rapid surveillance Global Odds Model with Proportional Odds and Trend Odds Applied to Gross and Microscopic Brain Infarcts. Flexible and robust procedure for subgroup inference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1