{"title":"最大公约数依赖性杂耍序列旋转的高效性能","authors":"Joseph A. Erho, J. I. Consul, B. R. Japheth","doi":"10.1515/comp-2022-0234","DOIUrl":null,"url":null,"abstract":"Abstract In previous experimental study with three-way-reversal and juggling sequence rotation algorithms, using 20,000,000 elements for type LONG in Java, the average execution times have been shown to be 49.66761ms and 246.4394ms, respectively. These results have revealed appreciable low performance in the juggling algorithm despite its proven optimality. However, the juggling algorithm has also exhibited efficiency with some offset ranges. Due to this pattern of the juggling algorithm, the current study is focused on investigating source of the inefficiency on the average performance. Samples were extracted from the previous experimental data, presented differently and analyzed both graphically and in tabular form. Greatest common divisor values from the data that equal offsets were used. As emanating from the previous study, the Java language used for the rotation was to simulate ordering of tasks for safety and efficiency in the context of real-time task scheduling. Outcome of the investigation shows that juggling rotation performance competes favorably with three-way-reversal rotation (and even better in few cases) for certain offsets, but poorly with the rests. This study identifies the poorest performances around offsets in the neighborhood of square root of the sequence size. From the outcome, the study therefore strongly advises application developers (especially for real-time systems) to be mindful of where and how to in using juggling rotation.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Greatest-common-divisor dependency of juggling sequence rotation efficient performance\",\"authors\":\"Joseph A. Erho, J. I. Consul, B. R. Japheth\",\"doi\":\"10.1515/comp-2022-0234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In previous experimental study with three-way-reversal and juggling sequence rotation algorithms, using 20,000,000 elements for type LONG in Java, the average execution times have been shown to be 49.66761ms and 246.4394ms, respectively. These results have revealed appreciable low performance in the juggling algorithm despite its proven optimality. However, the juggling algorithm has also exhibited efficiency with some offset ranges. Due to this pattern of the juggling algorithm, the current study is focused on investigating source of the inefficiency on the average performance. Samples were extracted from the previous experimental data, presented differently and analyzed both graphically and in tabular form. Greatest common divisor values from the data that equal offsets were used. As emanating from the previous study, the Java language used for the rotation was to simulate ordering of tasks for safety and efficiency in the context of real-time task scheduling. Outcome of the investigation shows that juggling rotation performance competes favorably with three-way-reversal rotation (and even better in few cases) for certain offsets, but poorly with the rests. This study identifies the poorest performances around offsets in the neighborhood of square root of the sequence size. From the outcome, the study therefore strongly advises application developers (especially for real-time systems) to be mindful of where and how to in using juggling rotation.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2022-0234\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2022-0234","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Greatest-common-divisor dependency of juggling sequence rotation efficient performance
Abstract In previous experimental study with three-way-reversal and juggling sequence rotation algorithms, using 20,000,000 elements for type LONG in Java, the average execution times have been shown to be 49.66761ms and 246.4394ms, respectively. These results have revealed appreciable low performance in the juggling algorithm despite its proven optimality. However, the juggling algorithm has also exhibited efficiency with some offset ranges. Due to this pattern of the juggling algorithm, the current study is focused on investigating source of the inefficiency on the average performance. Samples were extracted from the previous experimental data, presented differently and analyzed both graphically and in tabular form. Greatest common divisor values from the data that equal offsets were used. As emanating from the previous study, the Java language used for the rotation was to simulate ordering of tasks for safety and efficiency in the context of real-time task scheduling. Outcome of the investigation shows that juggling rotation performance competes favorably with three-way-reversal rotation (and even better in few cases) for certain offsets, but poorly with the rests. This study identifies the poorest performances around offsets in the neighborhood of square root of the sequence size. From the outcome, the study therefore strongly advises application developers (especially for real-time systems) to be mindful of where and how to in using juggling rotation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.