用松弛NewtonSLRA算法近似GCD

IF 0.4 Q4 MATHEMATICS, APPLIED ACM Communications in Computer Algebra Pub Date : 2021-09-01 DOI:10.1145/3511528.3511536
Kosaku Nagasaka
{"title":"用松弛NewtonSLRA算法近似GCD","authors":"Kosaku Nagasaka","doi":"10.1145/3511528.3511536","DOIUrl":null,"url":null,"abstract":"We propose a better algorithm for approximate greatest common divisor (approximate GCD) of univariate polynomials in terms of robustness and distance, based on the NewtonSLRA algorithm that is a solver for the structured low rank approximation (SLRA) problem. Our algorithm mainly enlarges the tangent space in the NewtonSLRA algorithm and adapts it to a certain weighted Frobenius norm. Moreover, we propose some improvement in computing time.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"55 1","pages":"97 - 101"},"PeriodicalIF":0.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate GCD by relaxed NewtonSLRA algorithm\",\"authors\":\"Kosaku Nagasaka\",\"doi\":\"10.1145/3511528.3511536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a better algorithm for approximate greatest common divisor (approximate GCD) of univariate polynomials in terms of robustness and distance, based on the NewtonSLRA algorithm that is a solver for the structured low rank approximation (SLRA) problem. Our algorithm mainly enlarges the tangent space in the NewtonSLRA algorithm and adapts it to a certain weighted Frobenius norm. Moreover, we propose some improvement in computing time.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"55 1\",\"pages\":\"97 - 101\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3511528.3511536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3511528.3511536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

基于结构化低秩近似(SLRA)问题的求解器NewtonSLRA算法,我们提出了一种更好的单变量多项式近似最大公约数(approximate GCD)的鲁棒性和距离的算法。我们的算法主要是扩大NewtonSLRA算法中的切空间,并使其适应于一定的加权Frobenius范数。此外,我们提出了一些改进的计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approximate GCD by relaxed NewtonSLRA algorithm
We propose a better algorithm for approximate greatest common divisor (approximate GCD) of univariate polynomials in terms of robustness and distance, based on the NewtonSLRA algorithm that is a solver for the structured low rank approximation (SLRA) problem. Our algorithm mainly enlarges the tangent space in the NewtonSLRA algorithm and adapts it to a certain weighted Frobenius norm. Moreover, we propose some improvement in computing time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
期刊最新文献
A Novel Application of Polynomial Solvers in mmWave Analog Radio Beamforming How to use a CAS for Hardware Design Automation Clustering in the Lazard method for Cylindrical Algebraic Decomposition Computing Almost-Commuting Basis of Ordinary Differential Operators Symmetry Adapted Bases for Trigonometric Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1