{"title":"基于ai的光伏系统MPTT算法性能优化","authors":"K. J. Nigel, R. Rajeswari","doi":"10.1080/00051144.2023.2222251","DOIUrl":null,"url":null,"abstract":"ABSTRACT Solar models have been drawing much attention in the contemporary electricity environment. Solar energy installations employ various MPPT techniques that generate the most energy. Increasing a solar (PV) device's energy effectiveness has become a key concern for scientists. Multiple MPPT approaches that collect the most power possible using a PV array have been researched. Both primary and intermediate-type procedures will be used in most procedures. The performance and convergence velocity of such a PV device become significant depending on its practical deployment under various conditions. The energy attributes of unit sections collectively serve as the primary energy-extracting elements in specific systems, dependent upon all interior and exterior elements. Considering specific external dynamical circumstances, traditional maximal power point tracing systems will not have the required translation efficacy. For assessing the overall effectiveness of the proposed intelligent maximal power point outlining methodology in partially shaded situations having significant and dynamical variations within ambient parameters, that study contrasts its efficacy using traditional maximal power point tracing techniques.","PeriodicalId":55412,"journal":{"name":"Automatika","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-based performance optimization of MPTT algorithms for photovoltaic systems\",\"authors\":\"K. J. Nigel, R. Rajeswari\",\"doi\":\"10.1080/00051144.2023.2222251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Solar models have been drawing much attention in the contemporary electricity environment. Solar energy installations employ various MPPT techniques that generate the most energy. Increasing a solar (PV) device's energy effectiveness has become a key concern for scientists. Multiple MPPT approaches that collect the most power possible using a PV array have been researched. Both primary and intermediate-type procedures will be used in most procedures. The performance and convergence velocity of such a PV device become significant depending on its practical deployment under various conditions. The energy attributes of unit sections collectively serve as the primary energy-extracting elements in specific systems, dependent upon all interior and exterior elements. Considering specific external dynamical circumstances, traditional maximal power point tracing systems will not have the required translation efficacy. For assessing the overall effectiveness of the proposed intelligent maximal power point outlining methodology in partially shaded situations having significant and dynamical variations within ambient parameters, that study contrasts its efficacy using traditional maximal power point tracing techniques.\",\"PeriodicalId\":55412,\"journal\":{\"name\":\"Automatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/00051144.2023.2222251\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/00051144.2023.2222251","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
AI-based performance optimization of MPTT algorithms for photovoltaic systems
ABSTRACT Solar models have been drawing much attention in the contemporary electricity environment. Solar energy installations employ various MPPT techniques that generate the most energy. Increasing a solar (PV) device's energy effectiveness has become a key concern for scientists. Multiple MPPT approaches that collect the most power possible using a PV array have been researched. Both primary and intermediate-type procedures will be used in most procedures. The performance and convergence velocity of such a PV device become significant depending on its practical deployment under various conditions. The energy attributes of unit sections collectively serve as the primary energy-extracting elements in specific systems, dependent upon all interior and exterior elements. Considering specific external dynamical circumstances, traditional maximal power point tracing systems will not have the required translation efficacy. For assessing the overall effectiveness of the proposed intelligent maximal power point outlining methodology in partially shaded situations having significant and dynamical variations within ambient parameters, that study contrasts its efficacy using traditional maximal power point tracing techniques.
AutomatikaAUTOMATION & CONTROL SYSTEMS-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
4.00
自引率
5.30%
发文量
65
审稿时长
4.5 months
期刊介绍:
AUTOMATIKA – Journal for Control, Measurement, Electronics, Computing and Communications is an international scientific journal that publishes scientific and professional papers in the field of automatic control, robotics, measurements, electronics, computing, communications and related areas. Click here for full Focus & Scope.
AUTOMATIKA is published since 1960, and since 1991 by KoREMA - Croatian Society for Communications, Computing, Electronics, Measurement and Control, Member of IMEKO and IFAC.