{"title":"暖空气入侵与北极卫星海冰浓度时间序列的相关性","authors":"P. Rostosky, G. Spreen","doi":"10.5194/tc-17-3867-2023","DOIUrl":null,"url":null,"abstract":"Abstract. Winter warm air intrusions entering the Arctic region can strongly modify the microwave emission of the snow-covered sea ice system due to temperature-induced snow metamorphism and ice crust formations, e.g., after melt–refreeze events.\nCommon microwave radiometer satellite sea ice concentration retrievals are based on empirical models using the snow-covered sea ice emissivity and thus can be influenced by strong warm air intrusions. Here, we carry out a long-term study analyzing 41 years of winter sea ice concentration observations from different algorithms to investigate the impact of warm air intrusions on the retrieved ice concentration.\nOur results show that three out of four algorithms underestimate the sea ice concentration during (and up to 10 d after) warm air intrusions which increase the 2 m air temperature (daily maximum) above − 5 ∘C.\nThis can lead to sea ice area underestimations in the order of 104 to 105 km2. If the 2 m temperature during the warm air intrusions crosses − 2 ∘C, all algorithms are impacted. Our analysis shows that the strength of these strong warm air intrusions increased in recent years, especially in April. With a further climate change, such warm air intrusions are expected to\noccur more frequently and earlier in the season, and their influence on sea ice climate data records will become more important.\n","PeriodicalId":56315,"journal":{"name":"Cryosphere","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relevance of warm air intrusions for Arctic satellite sea ice concentration time series\",\"authors\":\"P. Rostosky, G. Spreen\",\"doi\":\"10.5194/tc-17-3867-2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Winter warm air intrusions entering the Arctic region can strongly modify the microwave emission of the snow-covered sea ice system due to temperature-induced snow metamorphism and ice crust formations, e.g., after melt–refreeze events.\\nCommon microwave radiometer satellite sea ice concentration retrievals are based on empirical models using the snow-covered sea ice emissivity and thus can be influenced by strong warm air intrusions. Here, we carry out a long-term study analyzing 41 years of winter sea ice concentration observations from different algorithms to investigate the impact of warm air intrusions on the retrieved ice concentration.\\nOur results show that three out of four algorithms underestimate the sea ice concentration during (and up to 10 d after) warm air intrusions which increase the 2 m air temperature (daily maximum) above − 5 ∘C.\\nThis can lead to sea ice area underestimations in the order of 104 to 105 km2. If the 2 m temperature during the warm air intrusions crosses − 2 ∘C, all algorithms are impacted. Our analysis shows that the strength of these strong warm air intrusions increased in recent years, especially in April. With a further climate change, such warm air intrusions are expected to\\noccur more frequently and earlier in the season, and their influence on sea ice climate data records will become more important.\\n\",\"PeriodicalId\":56315,\"journal\":{\"name\":\"Cryosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/tc-17-3867-2023\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/tc-17-3867-2023","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Relevance of warm air intrusions for Arctic satellite sea ice concentration time series
Abstract. Winter warm air intrusions entering the Arctic region can strongly modify the microwave emission of the snow-covered sea ice system due to temperature-induced snow metamorphism and ice crust formations, e.g., after melt–refreeze events.
Common microwave radiometer satellite sea ice concentration retrievals are based on empirical models using the snow-covered sea ice emissivity and thus can be influenced by strong warm air intrusions. Here, we carry out a long-term study analyzing 41 years of winter sea ice concentration observations from different algorithms to investigate the impact of warm air intrusions on the retrieved ice concentration.
Our results show that three out of four algorithms underestimate the sea ice concentration during (and up to 10 d after) warm air intrusions which increase the 2 m air temperature (daily maximum) above − 5 ∘C.
This can lead to sea ice area underestimations in the order of 104 to 105 km2. If the 2 m temperature during the warm air intrusions crosses − 2 ∘C, all algorithms are impacted. Our analysis shows that the strength of these strong warm air intrusions increased in recent years, especially in April. With a further climate change, such warm air intrusions are expected to
occur more frequently and earlier in the season, and their influence on sea ice climate data records will become more important.
期刊介绍:
The Cryosphere (TC) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of frozen water and ground on Earth and on other planetary bodies.
The main subject areas are the following:
ice sheets and glaciers;
planetary ice bodies;
permafrost and seasonally frozen ground;
seasonal snow cover;
sea ice;
river and lake ice;
remote sensing, numerical modelling, in situ and laboratory studies of the above and including studies of the interaction of the cryosphere with the rest of the climate system.