Tian Liyuan, Zhang Lijun, Hou-hua Wei, Jia Meixuan, Z. Man, Yan Zhihui, Liao Qingtao, Qian Xiaona, Wang Qian, Tian Jiangling, You Dianping, Wang Yakun
{"title":"Green利用毛藻提取物合成的ccnps及其对肺炎支原体感染肺炎小鼠模型的改善作用","authors":"Tian Liyuan, Zhang Lijun, Hou-hua Wei, Jia Meixuan, Z. Man, Yan Zhihui, Liao Qingtao, Qian Xiaona, Wang Qian, Tian Jiangling, You Dianping, Wang Yakun","doi":"10.1080/17458080.2022.2104451","DOIUrl":null,"url":null,"abstract":"Abstract In this study, copper nanoparticles were synthesised according to green chemistry rules using the aqueous extract of Alhagi maurorum. The green-synthesised CuNPs were characterised using different techniques such as EDX, FE-SEM, XRD and FT-IR. The FE-SEM results confirm spherical morphology for the nanoparticles with a size of 42.68–68.87 nm. In vivo, the Mycoplasma pneumonia injection was applied for inducing pneumonia in the BALB/c mice, also the treatment was with CuNPs. The serum parameters such as inflammatory mediators (IL-6, TNF-α, IL-8, TGF and IL-1), total cell counts, and total protein content levels were evaluated. CuNPs regulated the levels of the inflammatory mediators in the infected mice. The cellular arrangements at the histopathological images were ameliorated with the administration of CuNPs. At the antioxidant test, the CuNPs and BHT removed 50% of free radicals at the concentrations of 181 and 110 µg/ml. In conclusion, the results revealed the ameliorative property of CuNPs green-formulated by A. maurorum aqueous extract on M. pneumoniae infected pneumonia mice model.","PeriodicalId":15673,"journal":{"name":"Journal of Experimental Nanoscience","volume":"17 1","pages":"585 - 598"},"PeriodicalIF":2.6000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green synthesised CuNPs using Alhagi maurorum extract and its ability to amelioration of Mycoplasma pneumoniae infected pneumonia mice model\",\"authors\":\"Tian Liyuan, Zhang Lijun, Hou-hua Wei, Jia Meixuan, Z. Man, Yan Zhihui, Liao Qingtao, Qian Xiaona, Wang Qian, Tian Jiangling, You Dianping, Wang Yakun\",\"doi\":\"10.1080/17458080.2022.2104451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this study, copper nanoparticles were synthesised according to green chemistry rules using the aqueous extract of Alhagi maurorum. The green-synthesised CuNPs were characterised using different techniques such as EDX, FE-SEM, XRD and FT-IR. The FE-SEM results confirm spherical morphology for the nanoparticles with a size of 42.68–68.87 nm. In vivo, the Mycoplasma pneumonia injection was applied for inducing pneumonia in the BALB/c mice, also the treatment was with CuNPs. The serum parameters such as inflammatory mediators (IL-6, TNF-α, IL-8, TGF and IL-1), total cell counts, and total protein content levels were evaluated. CuNPs regulated the levels of the inflammatory mediators in the infected mice. The cellular arrangements at the histopathological images were ameliorated with the administration of CuNPs. At the antioxidant test, the CuNPs and BHT removed 50% of free radicals at the concentrations of 181 and 110 µg/ml. In conclusion, the results revealed the ameliorative property of CuNPs green-formulated by A. maurorum aqueous extract on M. pneumoniae infected pneumonia mice model.\",\"PeriodicalId\":15673,\"journal\":{\"name\":\"Journal of Experimental Nanoscience\",\"volume\":\"17 1\",\"pages\":\"585 - 598\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Nanoscience\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/17458080.2022.2104451\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Nanoscience","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/17458080.2022.2104451","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Green synthesised CuNPs using Alhagi maurorum extract and its ability to amelioration of Mycoplasma pneumoniae infected pneumonia mice model
Abstract In this study, copper nanoparticles were synthesised according to green chemistry rules using the aqueous extract of Alhagi maurorum. The green-synthesised CuNPs were characterised using different techniques such as EDX, FE-SEM, XRD and FT-IR. The FE-SEM results confirm spherical morphology for the nanoparticles with a size of 42.68–68.87 nm. In vivo, the Mycoplasma pneumonia injection was applied for inducing pneumonia in the BALB/c mice, also the treatment was with CuNPs. The serum parameters such as inflammatory mediators (IL-6, TNF-α, IL-8, TGF and IL-1), total cell counts, and total protein content levels were evaluated. CuNPs regulated the levels of the inflammatory mediators in the infected mice. The cellular arrangements at the histopathological images were ameliorated with the administration of CuNPs. At the antioxidant test, the CuNPs and BHT removed 50% of free radicals at the concentrations of 181 and 110 µg/ml. In conclusion, the results revealed the ameliorative property of CuNPs green-formulated by A. maurorum aqueous extract on M. pneumoniae infected pneumonia mice model.
期刊介绍:
Journal of Experimental Nanoscience, an international and multidisciplinary journal, provides a showcase for advances in the experimental sciences underlying nanotechnology and nanomaterials.
The journal exists to bring together the most significant papers making original contributions to nanoscience in a range of fields including biology and biochemistry, physics, chemistry, chemical, electrical and mechanical engineering, materials, pharmaceuticals and medicine. The aim is to provide a forum in which cross fertilization between application areas, methodologies, disciplines, as well as academic and industrial researchers can take place and new developments can be encouraged.