{"title":"单相和两相流中壁边界湍流的大尺度结构:加深对沙尘暴期间大气表层的理解","authors":"Hongyou Liu, Xiaojing Zheng","doi":"10.1017/flo.2021.6","DOIUrl":null,"url":null,"abstract":"Graphical Abstract In recent years, observations of the atmospheric surface layer have greatly promoted research on high-Reynolds-number wall-bounded turbulence, especially observations of wind-blown sand flows/sandstorms, which are typical sand-laden two-phase flows; these successes have advanced the science of gas–solid two-phase wall-bounded turbulence to very-high-Reynolds-number conditions. Based on a review of existing atmospheric surface layer observations and the development process, this paper summarizes the important promoting effect played by these observations in understanding the very-large-scale structure characteristics, turbulent kinetic energy fraction and amplitude modulation effect, and in reconstructing the spatial electric field under high-Reynolds-number wall turbulence. This review focuses on the main successes achieved by the observation of sand-laden two-phase flows and the three-dimensional turbulent flow field, especially in the streamwise direction. Finally, some suggestions and outlooks for further research on particle-laden two-phase wall-bounded turbulence under high-Reynolds-number conditions are presented.","PeriodicalId":93752,"journal":{"name":"Flow (Cambridge, England)","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1017/flo.2021.6","citationCount":"11","resultStr":"{\"title\":\"Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms\",\"authors\":\"Hongyou Liu, Xiaojing Zheng\",\"doi\":\"10.1017/flo.2021.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphical Abstract In recent years, observations of the atmospheric surface layer have greatly promoted research on high-Reynolds-number wall-bounded turbulence, especially observations of wind-blown sand flows/sandstorms, which are typical sand-laden two-phase flows; these successes have advanced the science of gas–solid two-phase wall-bounded turbulence to very-high-Reynolds-number conditions. Based on a review of existing atmospheric surface layer observations and the development process, this paper summarizes the important promoting effect played by these observations in understanding the very-large-scale structure characteristics, turbulent kinetic energy fraction and amplitude modulation effect, and in reconstructing the spatial electric field under high-Reynolds-number wall turbulence. This review focuses on the main successes achieved by the observation of sand-laden two-phase flows and the three-dimensional turbulent flow field, especially in the streamwise direction. Finally, some suggestions and outlooks for further research on particle-laden two-phase wall-bounded turbulence under high-Reynolds-number conditions are presented.\",\"PeriodicalId\":93752,\"journal\":{\"name\":\"Flow (Cambridge, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1017/flo.2021.6\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Flow (Cambridge, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/flo.2021.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow (Cambridge, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/flo.2021.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms
Graphical Abstract In recent years, observations of the atmospheric surface layer have greatly promoted research on high-Reynolds-number wall-bounded turbulence, especially observations of wind-blown sand flows/sandstorms, which are typical sand-laden two-phase flows; these successes have advanced the science of gas–solid two-phase wall-bounded turbulence to very-high-Reynolds-number conditions. Based on a review of existing atmospheric surface layer observations and the development process, this paper summarizes the important promoting effect played by these observations in understanding the very-large-scale structure characteristics, turbulent kinetic energy fraction and amplitude modulation effect, and in reconstructing the spatial electric field under high-Reynolds-number wall turbulence. This review focuses on the main successes achieved by the observation of sand-laden two-phase flows and the three-dimensional turbulent flow field, especially in the streamwise direction. Finally, some suggestions and outlooks for further research on particle-laden two-phase wall-bounded turbulence under high-Reynolds-number conditions are presented.