{"title":"油棕壳轻质混凝土的微观结构和界面过渡区研究。","authors":"M. Krishnamurthy, S. Vandanapu","doi":"10.1504/IJMMP.2019.10021545","DOIUrl":null,"url":null,"abstract":"Oil palm shell (OPS) aggregates can be used as a replacement of coarse aggregate in concrete to produce lightweight concrete. OPS is found to absorb more water compared to normal aggregate. Hence, surface treatment is carried out on OPS and the effect of water cement ratio on strength of concrete is investigated. This paper presents X-ray diffraction analysis carried out for treated and non-treated OPS (NTOPS) aggregate to find the mineralogical characteristics. Microstructural analysis and interfacial transition zone is investigated for treated and NTOPS using digital image processing or digital microscope. The results of investigation is compared with conventional concrete.","PeriodicalId":35049,"journal":{"name":"International Journal of Microstructure and Materials Properties","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Micro-structural and Interfacial Transition Zone investigation on Oil Palm Shell lightweight concrete.\",\"authors\":\"M. Krishnamurthy, S. Vandanapu\",\"doi\":\"10.1504/IJMMP.2019.10021545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Oil palm shell (OPS) aggregates can be used as a replacement of coarse aggregate in concrete to produce lightweight concrete. OPS is found to absorb more water compared to normal aggregate. Hence, surface treatment is carried out on OPS and the effect of water cement ratio on strength of concrete is investigated. This paper presents X-ray diffraction analysis carried out for treated and non-treated OPS (NTOPS) aggregate to find the mineralogical characteristics. Microstructural analysis and interfacial transition zone is investigated for treated and NTOPS using digital image processing or digital microscope. The results of investigation is compared with conventional concrete.\",\"PeriodicalId\":35049,\"journal\":{\"name\":\"International Journal of Microstructure and Materials Properties\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Microstructure and Materials Properties\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMMP.2019.10021545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microstructure and Materials Properties","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMMP.2019.10021545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Materials Science","Score":null,"Total":0}
Micro-structural and Interfacial Transition Zone investigation on Oil Palm Shell lightweight concrete.
Oil palm shell (OPS) aggregates can be used as a replacement of coarse aggregate in concrete to produce lightweight concrete. OPS is found to absorb more water compared to normal aggregate. Hence, surface treatment is carried out on OPS and the effect of water cement ratio on strength of concrete is investigated. This paper presents X-ray diffraction analysis carried out for treated and non-treated OPS (NTOPS) aggregate to find the mineralogical characteristics. Microstructural analysis and interfacial transition zone is investigated for treated and NTOPS using digital image processing or digital microscope. The results of investigation is compared with conventional concrete.
期刊介绍:
IJMMP publishes contributions on mechanical, electrical, magnetic and optical properties of metal, ceramic and polymeric materials in terms of the crystal structure and microstructure. Papers treat all aspects of materials, i.e., their selection, characterisation, transformation, modification, testing, and evaluation in the decision-making phase of product design/manufacture. Contributions in the fields of product, design and improvement of material properties in various production processes are welcome, along with scientific papers on new technologies, processes and materials, and on the modelling of processes.