{"title":"随机脉冲leontief型模型的数值研究","authors":"Jawad Tahir","doi":"10.1080/23080477.2021.1921469","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this article, a stochastic Leontief model with impulses has been studied, which is represented by a system of stochastic differential-algebraic equations, in both sides of the rectangular constant numerical matrices that form a singular pencil. The system has been considered in terms of the current velocity of the solution, which is a direct analog of the physical velocity of deterministic processes. The proposed approach in this work does not impose restrictions on the size and the form of the matrices included in the Leontief-type system. The Kroenke-Weierstrass transformation of the pencil was conducted by the coefficient matrices to the canonical form has been used to simplify the study of equations. This study also involves two methods: Firstly, using a stochastic differential equation, this was followed by using the so-called mean derivatives of Nelson random processes to describe the solutions of this equation. The distinguishing feature of the work proposed an approach based on the convergence of the theoretical results to the exact one. The findings show that explicit formulas for solutions and solvability conditions are obtained, and for a subsystem resolved with respect to the symmetric derivative. The theorem of existence of solutions for the system under consideration has been proved under certain conditions on the coefficients of the system. Conducting computational experiments on the model confirming the effectiveness of the proposed approach. Error, maximum and minimum of the singular values of matrices. GRAPHICAL ABSTRACT","PeriodicalId":53436,"journal":{"name":"Smart Science","volume":"9 1","pages":"245 - 256"},"PeriodicalIF":2.4000,"publicationDate":"2021-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23080477.2021.1921469","citationCount":"0","resultStr":"{\"title\":\"Numerical Study of Stochastic Leontief-Type Model with Impulses\",\"authors\":\"Jawad Tahir\",\"doi\":\"10.1080/23080477.2021.1921469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this article, a stochastic Leontief model with impulses has been studied, which is represented by a system of stochastic differential-algebraic equations, in both sides of the rectangular constant numerical matrices that form a singular pencil. The system has been considered in terms of the current velocity of the solution, which is a direct analog of the physical velocity of deterministic processes. The proposed approach in this work does not impose restrictions on the size and the form of the matrices included in the Leontief-type system. The Kroenke-Weierstrass transformation of the pencil was conducted by the coefficient matrices to the canonical form has been used to simplify the study of equations. This study also involves two methods: Firstly, using a stochastic differential equation, this was followed by using the so-called mean derivatives of Nelson random processes to describe the solutions of this equation. The distinguishing feature of the work proposed an approach based on the convergence of the theoretical results to the exact one. The findings show that explicit formulas for solutions and solvability conditions are obtained, and for a subsystem resolved with respect to the symmetric derivative. The theorem of existence of solutions for the system under consideration has been proved under certain conditions on the coefficients of the system. Conducting computational experiments on the model confirming the effectiveness of the proposed approach. Error, maximum and minimum of the singular values of matrices. GRAPHICAL ABSTRACT\",\"PeriodicalId\":53436,\"journal\":{\"name\":\"Smart Science\",\"volume\":\"9 1\",\"pages\":\"245 - 256\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2021-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23080477.2021.1921469\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23080477.2021.1921469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23080477.2021.1921469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Numerical Study of Stochastic Leontief-Type Model with Impulses
ABSTRACT In this article, a stochastic Leontief model with impulses has been studied, which is represented by a system of stochastic differential-algebraic equations, in both sides of the rectangular constant numerical matrices that form a singular pencil. The system has been considered in terms of the current velocity of the solution, which is a direct analog of the physical velocity of deterministic processes. The proposed approach in this work does not impose restrictions on the size and the form of the matrices included in the Leontief-type system. The Kroenke-Weierstrass transformation of the pencil was conducted by the coefficient matrices to the canonical form has been used to simplify the study of equations. This study also involves two methods: Firstly, using a stochastic differential equation, this was followed by using the so-called mean derivatives of Nelson random processes to describe the solutions of this equation. The distinguishing feature of the work proposed an approach based on the convergence of the theoretical results to the exact one. The findings show that explicit formulas for solutions and solvability conditions are obtained, and for a subsystem resolved with respect to the symmetric derivative. The theorem of existence of solutions for the system under consideration has been proved under certain conditions on the coefficients of the system. Conducting computational experiments on the model confirming the effectiveness of the proposed approach. Error, maximum and minimum of the singular values of matrices. GRAPHICAL ABSTRACT
期刊介绍:
Smart Science (ISSN 2308-0477) is an international, peer-reviewed journal that publishes significant original scientific researches, and reviews and analyses of current research and science policy. We welcome submissions of high quality papers from all fields of science and from any source. Articles of an interdisciplinary nature are particularly welcomed. Smart Science aims to be among the top multidisciplinary journals covering a broad spectrum of smart topics in the fields of materials science, chemistry, physics, engineering, medicine, and biology. Smart Science is currently focusing on the topics of Smart Manufacturing (CPS, IoT and AI) for Industry 4.0, Smart Energy and Smart Chemistry and Materials. Other specific research areas covered by the journal include, but are not limited to: 1. Smart Science in the Future 2. Smart Manufacturing: -Cyber-Physical System (CPS) -Internet of Things (IoT) and Internet of Brain (IoB) -Artificial Intelligence -Smart Computing -Smart Design/Machine -Smart Sensing -Smart Information and Networks 3. Smart Energy and Thermal/Fluidic Science 4. Smart Chemistry and Materials