人工智能在胸部医学图像分析中的应用

IF 4.4 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Intelligent medicine Pub Date : 2021-09-01 DOI:10.1016/j.imed.2021.06.004
Feng Liu , Jie Tang , Jiechao Ma , Cheng Wang , Qing Ha , Yizhou Yu , Zhen Zhou
{"title":"人工智能在胸部医学图像分析中的应用","authors":"Feng Liu ,&nbsp;Jie Tang ,&nbsp;Jiechao Ma ,&nbsp;Cheng Wang ,&nbsp;Qing Ha ,&nbsp;Yizhou Yu ,&nbsp;Zhen Zhou","doi":"10.1016/j.imed.2021.06.004","DOIUrl":null,"url":null,"abstract":"<div><p>The aim of this article is to review recent progress in the application of artificial intelligence to chest medical image analysis. The lungs, bone, and mediastinum were included in terms of anatomy, while X-ray and computed tomography (CT), with and without contrast enhancement, were considered regarding imaging modalities. Four key components of deep learning were summarized, namely, network architectures, learning strategies, optimization methods, and vision tasks. Disease-specific applications were discussed in detail with respect to the dimension of the data input, network architecture, and modality: lung cancer, pneumonia, tuberculosis, pulmonary embolism, chronic obstructive pulmonary disease, and interstitial lung disease for lung; traumatic fractures, osteoporosis, osteoporotic fractures, and bone metastases for bone; and coronary artery calcification and aortic dissection for vascular diseases. Finally, five promising research directions and possible solutions were presented for future work.</p></div>","PeriodicalId":73400,"journal":{"name":"Intelligent medicine","volume":"1 3","pages":"Pages 104-117"},"PeriodicalIF":4.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.imed.2021.06.004","citationCount":"6","resultStr":"{\"title\":\"The application of artificial intelligence to chest medical image analysis\",\"authors\":\"Feng Liu ,&nbsp;Jie Tang ,&nbsp;Jiechao Ma ,&nbsp;Cheng Wang ,&nbsp;Qing Ha ,&nbsp;Yizhou Yu ,&nbsp;Zhen Zhou\",\"doi\":\"10.1016/j.imed.2021.06.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The aim of this article is to review recent progress in the application of artificial intelligence to chest medical image analysis. The lungs, bone, and mediastinum were included in terms of anatomy, while X-ray and computed tomography (CT), with and without contrast enhancement, were considered regarding imaging modalities. Four key components of deep learning were summarized, namely, network architectures, learning strategies, optimization methods, and vision tasks. Disease-specific applications were discussed in detail with respect to the dimension of the data input, network architecture, and modality: lung cancer, pneumonia, tuberculosis, pulmonary embolism, chronic obstructive pulmonary disease, and interstitial lung disease for lung; traumatic fractures, osteoporosis, osteoporotic fractures, and bone metastases for bone; and coronary artery calcification and aortic dissection for vascular diseases. Finally, five promising research directions and possible solutions were presented for future work.</p></div>\",\"PeriodicalId\":73400,\"journal\":{\"name\":\"Intelligent medicine\",\"volume\":\"1 3\",\"pages\":\"Pages 104-117\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.imed.2021.06.004\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667102621000358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667102621000358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 6

摘要

本文综述了近年来人工智能在胸部医学图像分析中的应用进展。解剖学上包括肺、骨和纵隔,而x射线和计算机断层扫描(CT),有或没有增强对比,考虑成像方式。总结了深度学习的四个关键组成部分,即网络架构、学习策略、优化方法和视觉任务。针对特定疾病的应用,详细讨论了数据输入的维度、网络架构和模式:肺癌、肺炎、肺结核、肺栓塞、慢性阻塞性肺病和肺间质性疾病;外伤性骨折、骨质疏松、骨质疏松性骨折和骨转移;和冠状动脉钙化和主动脉夹层血管疾病。最后,提出了今后工作的五大研究方向和可能的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The application of artificial intelligence to chest medical image analysis

The aim of this article is to review recent progress in the application of artificial intelligence to chest medical image analysis. The lungs, bone, and mediastinum were included in terms of anatomy, while X-ray and computed tomography (CT), with and without contrast enhancement, were considered regarding imaging modalities. Four key components of deep learning were summarized, namely, network architectures, learning strategies, optimization methods, and vision tasks. Disease-specific applications were discussed in detail with respect to the dimension of the data input, network architecture, and modality: lung cancer, pneumonia, tuberculosis, pulmonary embolism, chronic obstructive pulmonary disease, and interstitial lung disease for lung; traumatic fractures, osteoporosis, osteoporotic fractures, and bone metastases for bone; and coronary artery calcification and aortic dissection for vascular diseases. Finally, five promising research directions and possible solutions were presented for future work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intelligent medicine
Intelligent medicine Surgery, Radiology and Imaging, Artificial Intelligence, Biomedical Engineering
CiteScore
5.20
自引率
0.00%
发文量
19
期刊最新文献
Impact of data balancing a multiclass dataset before the creation of association rules to study bacterial vaginosis Neuropsychological detection and prediction using machine learning algorithms: a comprehensive review Improved neurological diagnoses and treatment strategies via automated human brain tissue segmentation from clinical magnetic resonance imaging Increasing the accuracy and reproducibility of positron emission tomography radiomics for predicting pelvic lymph node metastasis in patients with cervical cancer using 3D local binary pattern-based texture features A clinical decision support system using rough set theory and machine learning for disease prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1