M. Habib, S. Imtiaz, F. Khan, Salim Ahmed, J. Baker
{"title":"控压钻井中储层井涌效应预测及管理","authors":"M. Habib, S. Imtiaz, F. Khan, Salim Ahmed, J. Baker","doi":"10.2118/205020-PA","DOIUrl":null,"url":null,"abstract":"\n The sudden influx of reservoir fluids (i.e., reservoir kick) into the drilling annulus is one of the common abnormal events encountered in drilling operations. A kick can lead to a blowout, causing loss of lives, assets, and damage to the environment. This study presents a framework for real-time kick monitoring and management in managed-pressure-drilling (MPD) operation. The proposed framework consists of three distinct steps: the unscented Kalman filter (UKF) is used to detect and estimate the kick's severity; the estimated kick size and optimal control theory are used to calculate the time to mitigate the kick in the best-case scenario; and on the basis of the total predicted influx and pressure rise, the monitoring system generates a warning and activates the mitigation strategy. Thus, the proposed method can estimate, monitor, and manage kick in real time, enhancing the safety and efficiency of the MPD operation. The developed method was validated and demonstrated using a simulated MPD system, a pilot-scale experimental setup, and field data collected from an MPD operation in western Canada.","PeriodicalId":51165,"journal":{"name":"SPE Drilling & Completion","volume":"1 1","pages":"1-28"},"PeriodicalIF":1.3000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Prediction of Reservoir-Kick Effect and Its Management in the Managed-Pressure-Drilling Operation\",\"authors\":\"M. Habib, S. Imtiaz, F. Khan, Salim Ahmed, J. Baker\",\"doi\":\"10.2118/205020-PA\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The sudden influx of reservoir fluids (i.e., reservoir kick) into the drilling annulus is one of the common abnormal events encountered in drilling operations. A kick can lead to a blowout, causing loss of lives, assets, and damage to the environment. This study presents a framework for real-time kick monitoring and management in managed-pressure-drilling (MPD) operation. The proposed framework consists of three distinct steps: the unscented Kalman filter (UKF) is used to detect and estimate the kick's severity; the estimated kick size and optimal control theory are used to calculate the time to mitigate the kick in the best-case scenario; and on the basis of the total predicted influx and pressure rise, the monitoring system generates a warning and activates the mitigation strategy. Thus, the proposed method can estimate, monitor, and manage kick in real time, enhancing the safety and efficiency of the MPD operation. The developed method was validated and demonstrated using a simulated MPD system, a pilot-scale experimental setup, and field data collected from an MPD operation in western Canada.\",\"PeriodicalId\":51165,\"journal\":{\"name\":\"SPE Drilling & Completion\",\"volume\":\"1 1\",\"pages\":\"1-28\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Drilling & Completion\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2118/205020-PA\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, PETROLEUM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Drilling & Completion","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2118/205020-PA","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, PETROLEUM","Score":null,"Total":0}
Prediction of Reservoir-Kick Effect and Its Management in the Managed-Pressure-Drilling Operation
The sudden influx of reservoir fluids (i.e., reservoir kick) into the drilling annulus is one of the common abnormal events encountered in drilling operations. A kick can lead to a blowout, causing loss of lives, assets, and damage to the environment. This study presents a framework for real-time kick monitoring and management in managed-pressure-drilling (MPD) operation. The proposed framework consists of three distinct steps: the unscented Kalman filter (UKF) is used to detect and estimate the kick's severity; the estimated kick size and optimal control theory are used to calculate the time to mitigate the kick in the best-case scenario; and on the basis of the total predicted influx and pressure rise, the monitoring system generates a warning and activates the mitigation strategy. Thus, the proposed method can estimate, monitor, and manage kick in real time, enhancing the safety and efficiency of the MPD operation. The developed method was validated and demonstrated using a simulated MPD system, a pilot-scale experimental setup, and field data collected from an MPD operation in western Canada.
期刊介绍:
Covers horizontal and directional drilling, drilling fluids, bit technology, sand control, perforating, cementing, well control, completions and drilling operations.