Nurgün Büyükkıdan, Halil İlki̇men, Seher Kaya, Musa Sarı, Aysel Gülbandılar
{"title":"两种新的含不同芳香酸的苯并[d]噻唑-2-胺质子转移盐","authors":"Nurgün Büyükkıdan, Halil İlki̇men, Seher Kaya, Musa Sarı, Aysel Gülbandılar","doi":"10.1007/s10870-022-00974-w","DOIUrl":null,"url":null,"abstract":"<div><p>Two new proton transfer salts (HABT)<sup>+</sup>(SA)<sup>−</sup> (<b>1</b>) and (HABT)<sup>+</sup><sub>2</sub>(ADSA)<sup>2−</sup>·2H<sub>2</sub>O (<b>2</b>) were synthesized from the reaction of benzo[d]thiazol-2-amine (2-aminobenzothiazole) (ABT) with 2-hydroxybenzoic acid (salicylic acid) (HSA) and 2-aminobenzene-1,4-disulfonic acid (H<sub>2</sub>ADSA), respectively. The molecular structures of these salts were carried out by elemental analysis, X-ray diffraction crystallography, FTIR and UV–Vis techniques Single-crystal X-ray analysis of the compounds revealed proton transfer from acidic moieties to basic moieties to form salts with intermolecular hydrogen bond motifs R<sub>2</sub><sup>2</sup>(8) for <b>1</b> and R<sub>3</sub><sup>3</sup>(10) for <b>2</b>. The intramolecular hydrogen bond creates the cyclic S(6) motif in both structures (<b>1</b> and <b>2</b>). For salt <b>1</b>, crystallization took place in the P2(1)/c space group of the monoclinic system, and for salt <b>2</b> in the P-1 space group of the triclinic system. The antibacterial and antifungal properties of the compounds are assayed against various Gram positive bacteria {<i>Bacillus subtilis</i>, <i>Listeria monocytogenes</i> (ATCC 7644), <i>Enterococcus faecalis</i> (ATCC 29212), <i>Staphylococcus aureus</i> (NRRL B-767)}, Gram negative bacteria {<i>Escherichia coli</i> (ATCC 25922), <i>Pseudomonas aeruginosa</i> (ATCC 27853)} and fungus {<i>Candida albicans</i> (F89)}. Minimum inhibitory concentrations (MIC) of synthesized salts were compared with antibacterial (levofloxacin cefepime, vancomycin) and antifungal (Fluconazole) reference compounds.</p><h3>Graphical Abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":615,"journal":{"name":"Journal of Chemical Crystallography","volume":"53 2","pages":"336 - 344"},"PeriodicalIF":0.4000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two New Proton Transfer Salts of Benzo[d]thiazol-2-amine with Different Aromatic Acids\",\"authors\":\"Nurgün Büyükkıdan, Halil İlki̇men, Seher Kaya, Musa Sarı, Aysel Gülbandılar\",\"doi\":\"10.1007/s10870-022-00974-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Two new proton transfer salts (HABT)<sup>+</sup>(SA)<sup>−</sup> (<b>1</b>) and (HABT)<sup>+</sup><sub>2</sub>(ADSA)<sup>2−</sup>·2H<sub>2</sub>O (<b>2</b>) were synthesized from the reaction of benzo[d]thiazol-2-amine (2-aminobenzothiazole) (ABT) with 2-hydroxybenzoic acid (salicylic acid) (HSA) and 2-aminobenzene-1,4-disulfonic acid (H<sub>2</sub>ADSA), respectively. The molecular structures of these salts were carried out by elemental analysis, X-ray diffraction crystallography, FTIR and UV–Vis techniques Single-crystal X-ray analysis of the compounds revealed proton transfer from acidic moieties to basic moieties to form salts with intermolecular hydrogen bond motifs R<sub>2</sub><sup>2</sup>(8) for <b>1</b> and R<sub>3</sub><sup>3</sup>(10) for <b>2</b>. The intramolecular hydrogen bond creates the cyclic S(6) motif in both structures (<b>1</b> and <b>2</b>). For salt <b>1</b>, crystallization took place in the P2(1)/c space group of the monoclinic system, and for salt <b>2</b> in the P-1 space group of the triclinic system. The antibacterial and antifungal properties of the compounds are assayed against various Gram positive bacteria {<i>Bacillus subtilis</i>, <i>Listeria monocytogenes</i> (ATCC 7644), <i>Enterococcus faecalis</i> (ATCC 29212), <i>Staphylococcus aureus</i> (NRRL B-767)}, Gram negative bacteria {<i>Escherichia coli</i> (ATCC 25922), <i>Pseudomonas aeruginosa</i> (ATCC 27853)} and fungus {<i>Candida albicans</i> (F89)}. Minimum inhibitory concentrations (MIC) of synthesized salts were compared with antibacterial (levofloxacin cefepime, vancomycin) and antifungal (Fluconazole) reference compounds.</p><h3>Graphical Abstract</h3>\\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\\n </div>\",\"PeriodicalId\":615,\"journal\":{\"name\":\"Journal of Chemical Crystallography\",\"volume\":\"53 2\",\"pages\":\"336 - 344\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Crystallography\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10870-022-00974-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Crystallography","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10870-022-00974-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Two New Proton Transfer Salts of Benzo[d]thiazol-2-amine with Different Aromatic Acids
Two new proton transfer salts (HABT)+(SA)− (1) and (HABT)+2(ADSA)2−·2H2O (2) were synthesized from the reaction of benzo[d]thiazol-2-amine (2-aminobenzothiazole) (ABT) with 2-hydroxybenzoic acid (salicylic acid) (HSA) and 2-aminobenzene-1,4-disulfonic acid (H2ADSA), respectively. The molecular structures of these salts were carried out by elemental analysis, X-ray diffraction crystallography, FTIR and UV–Vis techniques Single-crystal X-ray analysis of the compounds revealed proton transfer from acidic moieties to basic moieties to form salts with intermolecular hydrogen bond motifs R22(8) for 1 and R33(10) for 2. The intramolecular hydrogen bond creates the cyclic S(6) motif in both structures (1 and 2). For salt 1, crystallization took place in the P2(1)/c space group of the monoclinic system, and for salt 2 in the P-1 space group of the triclinic system. The antibacterial and antifungal properties of the compounds are assayed against various Gram positive bacteria {Bacillus subtilis, Listeria monocytogenes (ATCC 7644), Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (NRRL B-767)}, Gram negative bacteria {Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853)} and fungus {Candida albicans (F89)}. Minimum inhibitory concentrations (MIC) of synthesized salts were compared with antibacterial (levofloxacin cefepime, vancomycin) and antifungal (Fluconazole) reference compounds.
期刊介绍:
Journal of Chemical Crystallography is an international and interdisciplinary publication dedicated to the rapid dissemination of research results in the general areas of crystallography and spectroscopy. Timely research reports detail topics in crystal chemistry and physics and their relation to problems of molecular structure; structural studies of solids, liquids, gases, and solutions involving spectroscopic, spectrometric, X-ray, and electron and neutron diffraction; and theoretical studies.