{"title":"为什么交叉滞后面板模型几乎从来都不是正确的选择","authors":"Richard E. Lucas","doi":"10.1177/25152459231158378","DOIUrl":null,"url":null,"abstract":"The cross-lagged panel model (CLPM) is a widely used technique for examining reciprocal causal effects using longitudinal data. Critics of the CLPM have noted that by failing to account for certain person-level associations, estimates of these causal effects can be biased. Because of this, models that incorporate stable-trait components (e.g., the random-intercept CLPM) have become popular alternatives. Debates about the merits of the CLPM have continued, however, with some researchers arguing that the CLPM is more appropriate than modern alternatives for examining common psychological questions. In this article, I discuss the ways that these defenses of the CLPM fail to acknowledge well-known limitations of the model. I propose some possible sources of confusion regarding these models and provide alternative ways of thinking about the problems with the CLPM. I then show in simulated data that with realistic assumptions, the CLPM is very likely to find spurious cross-lagged effects when they do not exist and can sometimes underestimate these effects when they do exist.","PeriodicalId":55645,"journal":{"name":"Advances in Methods and Practices in Psychological Science","volume":" ","pages":""},"PeriodicalIF":15.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Why the Cross-Lagged Panel Model Is Almost Never the Right Choice\",\"authors\":\"Richard E. Lucas\",\"doi\":\"10.1177/25152459231158378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cross-lagged panel model (CLPM) is a widely used technique for examining reciprocal causal effects using longitudinal data. Critics of the CLPM have noted that by failing to account for certain person-level associations, estimates of these causal effects can be biased. Because of this, models that incorporate stable-trait components (e.g., the random-intercept CLPM) have become popular alternatives. Debates about the merits of the CLPM have continued, however, with some researchers arguing that the CLPM is more appropriate than modern alternatives for examining common psychological questions. In this article, I discuss the ways that these defenses of the CLPM fail to acknowledge well-known limitations of the model. I propose some possible sources of confusion regarding these models and provide alternative ways of thinking about the problems with the CLPM. I then show in simulated data that with realistic assumptions, the CLPM is very likely to find spurious cross-lagged effects when they do not exist and can sometimes underestimate these effects when they do exist.\",\"PeriodicalId\":55645,\"journal\":{\"name\":\"Advances in Methods and Practices in Psychological Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":15.6000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Methods and Practices in Psychological Science\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1177/25152459231158378\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Methods and Practices in Psychological Science","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1177/25152459231158378","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY","Score":null,"Total":0}
Why the Cross-Lagged Panel Model Is Almost Never the Right Choice
The cross-lagged panel model (CLPM) is a widely used technique for examining reciprocal causal effects using longitudinal data. Critics of the CLPM have noted that by failing to account for certain person-level associations, estimates of these causal effects can be biased. Because of this, models that incorporate stable-trait components (e.g., the random-intercept CLPM) have become popular alternatives. Debates about the merits of the CLPM have continued, however, with some researchers arguing that the CLPM is more appropriate than modern alternatives for examining common psychological questions. In this article, I discuss the ways that these defenses of the CLPM fail to acknowledge well-known limitations of the model. I propose some possible sources of confusion regarding these models and provide alternative ways of thinking about the problems with the CLPM. I then show in simulated data that with realistic assumptions, the CLPM is very likely to find spurious cross-lagged effects when they do not exist and can sometimes underestimate these effects when they do exist.
期刊介绍:
In 2021, Advances in Methods and Practices in Psychological Science will undergo a transition to become an open access journal. This journal focuses on publishing innovative developments in research methods, practices, and conduct within the field of psychological science. It embraces a wide range of areas and topics and encourages the integration of methodological and analytical questions.
The aim of AMPPS is to bring the latest methodological advances to researchers from various disciplines, even those who are not methodological experts. Therefore, the journal seeks submissions that are accessible to readers with different research interests and that represent the diverse research trends within the field of psychological science.
The types of content that AMPPS welcomes include articles that communicate advancements in methods, practices, and metascience, as well as empirical scientific best practices. Additionally, tutorials, commentaries, and simulation studies on new techniques and research tools are encouraged. The journal also aims to publish papers that bring advances from specialized subfields to a broader audience. Lastly, AMPPS accepts Registered Replication Reports, which focus on replicating important findings from previously published studies.
Overall, the transition of Advances in Methods and Practices in Psychological Science to an open access journal aims to increase accessibility and promote the dissemination of new developments in research methods and practices within the field of psychological science.