利用时间序列分析识别云计算领域的烧伤区域

IF 0.4 Q4 REMOTE SENSING Revista de Teledeteccion Pub Date : 2018-06-29 DOI:10.4995/RAET.2018.8618
Jesús A. Anaya, W. Sione, A. M. Rodriguez-Montellano
{"title":"利用时间序列分析识别云计算领域的烧伤区域","authors":"Jesús A. Anaya, W. Sione, A. M. Rodriguez-Montellano","doi":"10.4995/RAET.2018.8618","DOIUrl":null,"url":null,"abstract":"There are large omission errors in the estimation of burned area in map products that are generated at a global scale. This error is then inherited by other models, for instance, those used to report Greenhouse Gas Emissions using a “bottom up” approach. This study evaluates temporal methods to improve burned area detection using Landsat 5-TM and 8-OLI. In this process, the normalized burn ratio (NBR) was used to highlight burned areas and thresholds to classify burned and non-burned areas. In order to maximize the burned area detection two alternatives to the temporal dNBR method were evaluated: the relative form of the temporal difference RdNBR and the use of time series metrics. The processing, algorithm development and access to Landsat data was made on the Google Earth Engine GEE platform. Three regions of Latin America with large fire occurrence were selected: The Amazon Forest in Colombia, the transition from Chiquitano to Amazon Forest in Bolivia, and El Chaco Region in Argentina. The accuracy assessment of these new products was based on burned area protocols. The best model classified 85% of burned areas in the Chiquitano Forests of Bolivia, 63% of the burned areas of the Amazon Forests of Colombia and 69% of burned areas in El Chaco of Argentina.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube\",\"authors\":\"Jesús A. Anaya, W. Sione, A. M. Rodriguez-Montellano\",\"doi\":\"10.4995/RAET.2018.8618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are large omission errors in the estimation of burned area in map products that are generated at a global scale. This error is then inherited by other models, for instance, those used to report Greenhouse Gas Emissions using a “bottom up” approach. This study evaluates temporal methods to improve burned area detection using Landsat 5-TM and 8-OLI. In this process, the normalized burn ratio (NBR) was used to highlight burned areas and thresholds to classify burned and non-burned areas. In order to maximize the burned area detection two alternatives to the temporal dNBR method were evaluated: the relative form of the temporal difference RdNBR and the use of time series metrics. The processing, algorithm development and access to Landsat data was made on the Google Earth Engine GEE platform. Three regions of Latin America with large fire occurrence were selected: The Amazon Forest in Colombia, the transition from Chiquitano to Amazon Forest in Bolivia, and El Chaco Region in Argentina. The accuracy assessment of these new products was based on burned area protocols. The best model classified 85% of burned areas in the Chiquitano Forests of Bolivia, 63% of the burned areas of the Amazon Forests of Colombia and 69% of burned areas in El Chaco of Argentina.\",\"PeriodicalId\":43626,\"journal\":{\"name\":\"Revista de Teledeteccion\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2018-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista de Teledeteccion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/RAET.2018.8618\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/RAET.2018.8618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 4

摘要

在全球范围内生成的地图产品中,烧伤面积的估计存在很大的遗漏误差。这种错误随后被其他模型继承,例如,那些使用“自下而上”方法报告温室气体排放的模型。本研究评估了使用Landsat 5-TM和8-OLI改进烧伤面积检测的时间方法。在此过程中,标准化燃烧比(NBR)用于突出显示燃烧区域,并使用阈值对燃烧区域和未燃烧区域进行分类。为了最大化烧伤面积检测,评估了时间dNBR方法的两种替代方案:时间差RdNBR的相对形式和时间序列度量的使用。陆地卫星数据的处理、算法开发和访问是在谷歌地球引擎GEE平台上进行的。选择了拉丁美洲发生大火的三个地区:哥伦比亚的亚马逊森林、玻利维亚从奇基塔诺到亚马逊森林的过渡地区和阿根廷的El Chaco地区。这些新产品的准确性评估是基于烧伤面积协议。最佳模型对玻利维亚奇基塔诺森林85%的烧伤面积、哥伦比亚亚马逊森林63%的烧伤面积和阿根廷El Chaco 69%的烧伤面积进行了分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identificación de áreas quemadas mediante el análisis de series de tiempo en el ámbito de computación en la nube
There are large omission errors in the estimation of burned area in map products that are generated at a global scale. This error is then inherited by other models, for instance, those used to report Greenhouse Gas Emissions using a “bottom up” approach. This study evaluates temporal methods to improve burned area detection using Landsat 5-TM and 8-OLI. In this process, the normalized burn ratio (NBR) was used to highlight burned areas and thresholds to classify burned and non-burned areas. In order to maximize the burned area detection two alternatives to the temporal dNBR method were evaluated: the relative form of the temporal difference RdNBR and the use of time series metrics. The processing, algorithm development and access to Landsat data was made on the Google Earth Engine GEE platform. Three regions of Latin America with large fire occurrence were selected: The Amazon Forest in Colombia, the transition from Chiquitano to Amazon Forest in Bolivia, and El Chaco Region in Argentina. The accuracy assessment of these new products was based on burned area protocols. The best model classified 85% of burned areas in the Chiquitano Forests of Bolivia, 63% of the burned areas of the Amazon Forests of Colombia and 69% of burned areas in El Chaco of Argentina.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista de Teledeteccion
Revista de Teledeteccion REMOTE SENSING-
CiteScore
1.80
自引率
14.30%
发文量
11
审稿时长
10 weeks
期刊最新文献
Clasificación de uso y cobertura del suelo a través de algoritmos de aprendizaje automático: revisión bibliográfica Mapeo semiautomático de áreas quemadas en Chimborazo-Ecuador utilizando medias compuestas de dNBR con umbrales ajustados Análisis espacio-temporal de florecimientos algales nocivos en un lago-cráter tropical usando datos MODIS (2003-2020) Estimación de biomasa y carbono con herramientas de teledetección en bosques secos tropicales del Tolima, Colombia Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1