Anwar Jaman, Muhammad Ulin Nuha Aba, O. A. Widyayanti
{"title":"利用稻壳二氧化硅和石灰石碳酸钙合成白色矿物三氧化物骨料(WMTA)","authors":"Anwar Jaman, Muhammad Ulin Nuha Aba, O. A. Widyayanti","doi":"10.14710/jksa.26.2.64-69","DOIUrl":null,"url":null,"abstract":"White Mineral Trioxide Aggregate (WMTA) was produced using silica as the initial material extracted from rice husk ash and calcium carbonate limestone. This research was initiated by calcinating rice husk ash at 700°C for 3 hours. Silica extraction was performed using 2 M NaOH and added HCl. The extract precipitate was washed using deionized water. Calcium carbonate was made from limestone using 1 M HNO3 and NH3 and continued with carbonation. WMTA was produced by mixing SiO2, CaCO3, and Al2O3. The mixture was homogenized with deionized water and heated, then pellets calcined made at a temperature of 1000°C, and calcination products were added Bi2O3. Synthesized WMTA characterized using TGA/DSC, FTIR, and XRD showed the presence of Ca3SiO5, Ca2SiO4, and Ca3Al2O6 phases, which were like ProRoot’s WMTA.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of White Mineral Trioxide Aggregate (WMTA) Using Silica from Rice Husk and Calcium Carbonate from Limestone\",\"authors\":\"Anwar Jaman, Muhammad Ulin Nuha Aba, O. A. Widyayanti\",\"doi\":\"10.14710/jksa.26.2.64-69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"White Mineral Trioxide Aggregate (WMTA) was produced using silica as the initial material extracted from rice husk ash and calcium carbonate limestone. This research was initiated by calcinating rice husk ash at 700°C for 3 hours. Silica extraction was performed using 2 M NaOH and added HCl. The extract precipitate was washed using deionized water. Calcium carbonate was made from limestone using 1 M HNO3 and NH3 and continued with carbonation. WMTA was produced by mixing SiO2, CaCO3, and Al2O3. The mixture was homogenized with deionized water and heated, then pellets calcined made at a temperature of 1000°C, and calcination products were added Bi2O3. Synthesized WMTA characterized using TGA/DSC, FTIR, and XRD showed the presence of Ca3SiO5, Ca2SiO4, and Ca3Al2O6 phases, which were like ProRoot’s WMTA.\",\"PeriodicalId\":17811,\"journal\":{\"name\":\"Jurnal Kimia Sains dan Aplikasi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kimia Sains dan Aplikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jksa.26.2.64-69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Sains dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jksa.26.2.64-69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Synthesis of White Mineral Trioxide Aggregate (WMTA) Using Silica from Rice Husk and Calcium Carbonate from Limestone
White Mineral Trioxide Aggregate (WMTA) was produced using silica as the initial material extracted from rice husk ash and calcium carbonate limestone. This research was initiated by calcinating rice husk ash at 700°C for 3 hours. Silica extraction was performed using 2 M NaOH and added HCl. The extract precipitate was washed using deionized water. Calcium carbonate was made from limestone using 1 M HNO3 and NH3 and continued with carbonation. WMTA was produced by mixing SiO2, CaCO3, and Al2O3. The mixture was homogenized with deionized water and heated, then pellets calcined made at a temperature of 1000°C, and calcination products were added Bi2O3. Synthesized WMTA characterized using TGA/DSC, FTIR, and XRD showed the presence of Ca3SiO5, Ca2SiO4, and Ca3Al2O6 phases, which were like ProRoot’s WMTA.