Samuel Kojo Ahorsu, H. Ofori, E. Kumah, Maxwell Budu, Cephas Kwaku Bosrotsi, Joseph Aveyiri
{"title":"HTU型可变切屑间隙木薯切片机的研制","authors":"Samuel Kojo Ahorsu, H. Ofori, E. Kumah, Maxwell Budu, Cephas Kwaku Bosrotsi, Joseph Aveyiri","doi":"10.17221/102/2020-rae","DOIUrl":null,"url":null,"abstract":"The objective of this research was to design, construct and evaluate a variable chipping clearance cassava chipper for processors which will produce uniform and varying cassava chip geometry for multipurpose usage. It consists of a drive shaft with varying chipping clearances (6, 18, and 28 mm) to produce varied chip geometry. The average throughput capacity of the chipper was found to be 475.5 kg·h–1 at a speed range of 460–800 rpm with a chipping clearance of 6–28 mm. The average chipping efficiency ranges from a minimum–maximum of 76.6–99.4% for the selected operational speeds and chipping clearances. The chipping capacity and the output to input ratio is dependent on the operational speeds and chipping clearances of the machine.","PeriodicalId":20906,"journal":{"name":"Research in Agricultural Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of HTU-model variable chipping clearance cassava chipper\",\"authors\":\"Samuel Kojo Ahorsu, H. Ofori, E. Kumah, Maxwell Budu, Cephas Kwaku Bosrotsi, Joseph Aveyiri\",\"doi\":\"10.17221/102/2020-rae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this research was to design, construct and evaluate a variable chipping clearance cassava chipper for processors which will produce uniform and varying cassava chip geometry for multipurpose usage. It consists of a drive shaft with varying chipping clearances (6, 18, and 28 mm) to produce varied chip geometry. The average throughput capacity of the chipper was found to be 475.5 kg·h–1 at a speed range of 460–800 rpm with a chipping clearance of 6–28 mm. The average chipping efficiency ranges from a minimum–maximum of 76.6–99.4% for the selected operational speeds and chipping clearances. The chipping capacity and the output to input ratio is dependent on the operational speeds and chipping clearances of the machine.\",\"PeriodicalId\":20906,\"journal\":{\"name\":\"Research in Agricultural Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Agricultural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17221/102/2020-rae\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Agricultural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17221/102/2020-rae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Development of HTU-model variable chipping clearance cassava chipper
The objective of this research was to design, construct and evaluate a variable chipping clearance cassava chipper for processors which will produce uniform and varying cassava chip geometry for multipurpose usage. It consists of a drive shaft with varying chipping clearances (6, 18, and 28 mm) to produce varied chip geometry. The average throughput capacity of the chipper was found to be 475.5 kg·h–1 at a speed range of 460–800 rpm with a chipping clearance of 6–28 mm. The average chipping efficiency ranges from a minimum–maximum of 76.6–99.4% for the selected operational speeds and chipping clearances. The chipping capacity and the output to input ratio is dependent on the operational speeds and chipping clearances of the machine.
期刊介绍:
Original scientific papers, short communications, information, and studies covering all areas of agricultural engineering, agricultural technology, processing of agricultural products, countryside buildings and related problems from ecology, energetics, economy, ergonomy and applied physics and chemistry. Papers are published in English.