Siyang Zhong, Zijun Zhang, Huan Su, Chenyang Li, Yifeng Lin, Wei Lu, Zhendong Jiang, Lin Yang
{"title":"生物和物理强化对靶向肌肉再支配的疗效","authors":"Siyang Zhong, Zijun Zhang, Huan Su, Chenyang Li, Yifeng Lin, Wei Lu, Zhendong Jiang, Lin Yang","doi":"10.34133/2022/9759265","DOIUrl":null,"url":null,"abstract":"Targeted muscle reinnervation (TMR) is a microsurgical repair technique to reconstruct the anatomical structure between the distal nerve and the muscle stump to provide more myoelectric information to the artificially intelligent prosthesis. Postoperative functional electrical stimulation treatment of the patient's denervated muscle or proximal nerve stump as well as nerve growth factor injection is effective in promoting nerve regeneration and muscle function recovery. In this experiment, we successfully established a TMR rat model and divided Sprague-Dawley (SD) adult male rats into TMR group, TMR + FES group, and TMR + NGF group according to TMR and whether they received FES treatment or NGF injection after surgery, and the recovery effect of rat neuromuscular function was assessed by analyzing EMG signals. Through the experiments, we confirmed that growth factor supplementation and low-frequency electrical stimulation can effectively promote the regeneration of the transplanted nerve as well as significantly enhance the motor function of the target muscle and have a positive effect on the regeneration of the transplanted nerve.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficacy of Biological and Physical Enhancement on Targeted Muscle Reinnervation\",\"authors\":\"Siyang Zhong, Zijun Zhang, Huan Su, Chenyang Li, Yifeng Lin, Wei Lu, Zhendong Jiang, Lin Yang\",\"doi\":\"10.34133/2022/9759265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Targeted muscle reinnervation (TMR) is a microsurgical repair technique to reconstruct the anatomical structure between the distal nerve and the muscle stump to provide more myoelectric information to the artificially intelligent prosthesis. Postoperative functional electrical stimulation treatment of the patient's denervated muscle or proximal nerve stump as well as nerve growth factor injection is effective in promoting nerve regeneration and muscle function recovery. In this experiment, we successfully established a TMR rat model and divided Sprague-Dawley (SD) adult male rats into TMR group, TMR + FES group, and TMR + NGF group according to TMR and whether they received FES treatment or NGF injection after surgery, and the recovery effect of rat neuromuscular function was assessed by analyzing EMG signals. Through the experiments, we confirmed that growth factor supplementation and low-frequency electrical stimulation can effectively promote the regeneration of the transplanted nerve as well as significantly enhance the motor function of the target muscle and have a positive effect on the regeneration of the transplanted nerve.\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9759265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9759265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Efficacy of Biological and Physical Enhancement on Targeted Muscle Reinnervation
Targeted muscle reinnervation (TMR) is a microsurgical repair technique to reconstruct the anatomical structure between the distal nerve and the muscle stump to provide more myoelectric information to the artificially intelligent prosthesis. Postoperative functional electrical stimulation treatment of the patient's denervated muscle or proximal nerve stump as well as nerve growth factor injection is effective in promoting nerve regeneration and muscle function recovery. In this experiment, we successfully established a TMR rat model and divided Sprague-Dawley (SD) adult male rats into TMR group, TMR + FES group, and TMR + NGF group according to TMR and whether they received FES treatment or NGF injection after surgery, and the recovery effect of rat neuromuscular function was assessed by analyzing EMG signals. Through the experiments, we confirmed that growth factor supplementation and low-frequency electrical stimulation can effectively promote the regeneration of the transplanted nerve as well as significantly enhance the motor function of the target muscle and have a positive effect on the regeneration of the transplanted nerve.