{"title":"NO强场电离产生的NO+旋转波包","authors":"Shinichi Fukahori, Hirokazu Hasegawa","doi":"10.1088/1361-6455/acf631","DOIUrl":null,"url":null,"abstract":"We theoretically investigate the creation of the rotational wave packet in molecular ions upon the strong-field ionization of diatomic molecules by a femtosecond laser pulse. The rotational excitation of molecular cation is ascribed to the dependence of the strong-field ionization probability on the orientation angle of the molecular axis with respect to the laser polarization direction. By extending the molecular strong-field approximation theory, we calculate the rovibrational state distribution of the ground electronic X 1Σ+ state of NO+ after the ionization of NO in the electronic ground X 2Π1/2 state. We also show that the extent of the rotational excitation of NO+ is enhanced by the stimulated impulsive Raman processes both in neutral NO and in NO+ cation. The resultant time evolution of the rotational wave packet of NO+ is in good agreement with the delay dependent NO2+ yield recorded experimentally in our previous pump–probe study.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rotational wave packet of NO+ created upon strong-field ionization of NO\",\"authors\":\"Shinichi Fukahori, Hirokazu Hasegawa\",\"doi\":\"10.1088/1361-6455/acf631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We theoretically investigate the creation of the rotational wave packet in molecular ions upon the strong-field ionization of diatomic molecules by a femtosecond laser pulse. The rotational excitation of molecular cation is ascribed to the dependence of the strong-field ionization probability on the orientation angle of the molecular axis with respect to the laser polarization direction. By extending the molecular strong-field approximation theory, we calculate the rovibrational state distribution of the ground electronic X 1Σ+ state of NO+ after the ionization of NO in the electronic ground X 2Π1/2 state. We also show that the extent of the rotational excitation of NO+ is enhanced by the stimulated impulsive Raman processes both in neutral NO and in NO+ cation. The resultant time evolution of the rotational wave packet of NO+ is in good agreement with the delay dependent NO2+ yield recorded experimentally in our previous pump–probe study.\",\"PeriodicalId\":16826,\"journal\":{\"name\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics B: Atomic, Molecular and Optical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6455/acf631\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/acf631","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
Rotational wave packet of NO+ created upon strong-field ionization of NO
We theoretically investigate the creation of the rotational wave packet in molecular ions upon the strong-field ionization of diatomic molecules by a femtosecond laser pulse. The rotational excitation of molecular cation is ascribed to the dependence of the strong-field ionization probability on the orientation angle of the molecular axis with respect to the laser polarization direction. By extending the molecular strong-field approximation theory, we calculate the rovibrational state distribution of the ground electronic X 1Σ+ state of NO+ after the ionization of NO in the electronic ground X 2Π1/2 state. We also show that the extent of the rotational excitation of NO+ is enhanced by the stimulated impulsive Raman processes both in neutral NO and in NO+ cation. The resultant time evolution of the rotational wave packet of NO+ is in good agreement with the delay dependent NO2+ yield recorded experimentally in our previous pump–probe study.
期刊介绍:
Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.