提高多目标Grasshopper优化算法的效率以增强本体对齐

Zhaoming Lv, Rong Peng
{"title":"提高多目标Grasshopper优化算法的效率以增强本体对齐","authors":"Zhaoming Lv, Rong Peng","doi":"10.1051/wujns/2022273240","DOIUrl":null,"url":null,"abstract":"Ontology alignment is an essential and complex task to integrate heterogeneous ontology. The meta-heuristic algorithm has proven to be an effective method for ontology alignment. However, it only applies the inherent advantages of meta-heuristics algorithm and rarely considers the execution efficiency, especially the multi-objective ontology alignment model. The performance of such multi-objective optimization models mostly depends on the well-distributed and the fast-converged set of solutions in real-world applications. In this paper, two multi-objective grasshopper optimization algorithms (MOGOA) are proposed to enhance ontology alignment. One is ε-dominance concept based GOA (EMO-GOA) and the other is fast Non-dominated Sorting based GOA (NS-MOGOA). The performance of the two methods to align the ontology is evaluated by using the benchmark dataset. The results demonstrate that the proposed EMO-GOA and NS-MOGOA improve the quality of ontology alignment and reduce the running time compared with other well-known metaheuristic and the state-of-the-art ontology alignment methods.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving the Efficiency of Multi-Objective Grasshopper Optimization Algorithm to Enhance Ontology Alignment\",\"authors\":\"Zhaoming Lv, Rong Peng\",\"doi\":\"10.1051/wujns/2022273240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology alignment is an essential and complex task to integrate heterogeneous ontology. The meta-heuristic algorithm has proven to be an effective method for ontology alignment. However, it only applies the inherent advantages of meta-heuristics algorithm and rarely considers the execution efficiency, especially the multi-objective ontology alignment model. The performance of such multi-objective optimization models mostly depends on the well-distributed and the fast-converged set of solutions in real-world applications. In this paper, two multi-objective grasshopper optimization algorithms (MOGOA) are proposed to enhance ontology alignment. One is ε-dominance concept based GOA (EMO-GOA) and the other is fast Non-dominated Sorting based GOA (NS-MOGOA). The performance of the two methods to align the ontology is evaluated by using the benchmark dataset. The results demonstrate that the proposed EMO-GOA and NS-MOGOA improve the quality of ontology alignment and reduce the running time compared with other well-known metaheuristic and the state-of-the-art ontology alignment methods.\",\"PeriodicalId\":23976,\"journal\":{\"name\":\"Wuhan University Journal of Natural Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wuhan University Journal of Natural Sciences\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1051/wujns/2022273240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Multidisciplinary\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2022273240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 2

摘要

本体对齐是集成异构本体的一项重要而复杂的任务。元启发式算法已被证明是一种有效的本体对齐方法。然而,它只应用了元启发式算法的固有优势,很少考虑执行效率,尤其是多目标本体对齐模型。这种多目标优化模型的性能主要取决于现实应用中分布良好且快速收敛的解决方案集。本文提出了两种多目标蝗虫优化算法(MOGOA)来增强本体对齐。一种是基于ε-优势概念的GOA(EMO-GOA),另一种是快速非优势排序的GOA。通过使用基准数据集来评估两种方法对本体的对齐性能。结果表明,与其他著名的元启发式方法和最先进的本体对齐方法相比,所提出的EMO-GOA和NS-MOGOA提高了本体对齐的质量,减少了运行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving the Efficiency of Multi-Objective Grasshopper Optimization Algorithm to Enhance Ontology Alignment
Ontology alignment is an essential and complex task to integrate heterogeneous ontology. The meta-heuristic algorithm has proven to be an effective method for ontology alignment. However, it only applies the inherent advantages of meta-heuristics algorithm and rarely considers the execution efficiency, especially the multi-objective ontology alignment model. The performance of such multi-objective optimization models mostly depends on the well-distributed and the fast-converged set of solutions in real-world applications. In this paper, two multi-objective grasshopper optimization algorithms (MOGOA) are proposed to enhance ontology alignment. One is ε-dominance concept based GOA (EMO-GOA) and the other is fast Non-dominated Sorting based GOA (NS-MOGOA). The performance of the two methods to align the ontology is evaluated by using the benchmark dataset. The results demonstrate that the proposed EMO-GOA and NS-MOGOA improve the quality of ontology alignment and reduce the running time compared with other well-known metaheuristic and the state-of-the-art ontology alignment methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wuhan University Journal of Natural Sciences
Wuhan University Journal of Natural Sciences Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
2485
期刊介绍: Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.
期刊最新文献
Comprehensive Analysis of the Role of Forkhead Box J3 (FOXJ3) in Human Cancers Three New Classes of Subsystem Codes A Note of the Interpolating Sequence in Qp∩H∞ Learning Label Correlations for Multi-Label Online Passive Aggressive Classification Algorithm Uniform Asymptotics for Finite-Time Ruin Probabilities of Risk Models with Non-Stationary Arrivals and Strongly Subexponential Claim Sizes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1