基于改进更快RCNN的织物缺陷检测

Yuan He, Han-Dong Zhang, Xin-Yue Huang, F. E. Tay
{"title":"基于改进更快RCNN的织物缺陷检测","authors":"Yuan He, Han-Dong Zhang, Xin-Yue Huang, F. E. Tay","doi":"10.5121/ijaia.2021.12402","DOIUrl":null,"url":null,"abstract":"In the production process of fabric, defect detection plays an important role in the control of product quality. Consider that traditional manual fabric defect detection method are time-consuming and inaccuracy, utilizing computer vision technology to automatically detect fabric defects can better fulfill the manufacture requirement. In this project, we improved Faster RCNN with convolutional block attention module (CBAM) to detect fabric defects. Attention module is introduced from graph neural network, it can infer the attention map from the intermediate feature map and multiply the attention map to adaptively refine the feature. This method improve the performance of classification and detection without increase the computation-consuming. The experiment results show that Faster RCNN with attention module can efficient improve the classification accuracy.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabric Defect Detection based on Improved Faster RCNN\",\"authors\":\"Yuan He, Han-Dong Zhang, Xin-Yue Huang, F. E. Tay\",\"doi\":\"10.5121/ijaia.2021.12402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the production process of fabric, defect detection plays an important role in the control of product quality. Consider that traditional manual fabric defect detection method are time-consuming and inaccuracy, utilizing computer vision technology to automatically detect fabric defects can better fulfill the manufacture requirement. In this project, we improved Faster RCNN with convolutional block attention module (CBAM) to detect fabric defects. Attention module is introduced from graph neural network, it can infer the attention map from the intermediate feature map and multiply the attention map to adaptively refine the feature. This method improve the performance of classification and detection without increase the computation-consuming. The experiment results show that Faster RCNN with attention module can efficient improve the classification accuracy.\",\"PeriodicalId\":93188,\"journal\":{\"name\":\"International journal of artificial intelligence & applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of artificial intelligence & applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/ijaia.2021.12402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2021.12402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在织物生产过程中,缺陷检测在产品质量控制中起着重要作用。考虑到传统的手工织物缺陷检测方法耗时且不准确,利用计算机视觉技术自动检测织物缺陷可以更好地满足生产要求。在这个项目中,我们使用卷积块注意力模块(CBAM)改进了Faster RCNN,以检测织物缺陷。注意力模块是从图神经网络中引入的,它可以从中间特征图中推断出注意力图,并将注意力图相乘以自适应地细化特征。该方法在不增加计算量的情况下提高了分类和检测的性能。实验结果表明,带有注意力模块的Faster RCNN可以有效地提高分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabric Defect Detection based on Improved Faster RCNN
In the production process of fabric, defect detection plays an important role in the control of product quality. Consider that traditional manual fabric defect detection method are time-consuming and inaccuracy, utilizing computer vision technology to automatically detect fabric defects can better fulfill the manufacture requirement. In this project, we improved Faster RCNN with convolutional block attention module (CBAM) to detect fabric defects. Attention module is introduced from graph neural network, it can infer the attention map from the intermediate feature map and multiply the attention map to adaptively refine the feature. This method improve the performance of classification and detection without increase the computation-consuming. The experiment results show that Faster RCNN with attention module can efficient improve the classification accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of Networks Generated by Kernel Growing Neural Gas Identifying Text Classification Failures in Multilingual AI-Generated Content Subverting Characters Stereotypes: Exploring the Role of AI in Stereotype Subversion Performance Evaluation of Block-Sized Algorithms for Majority Vote in Facial Recognition Sentiment Analysis in Indian Elections: Unraveling Public Perception of the Karnataka Elections With Transformers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1