{"title":"具有纵向涡产生的旋转矩形螺旋管内流动特性和能量分布的计算研究","authors":"R. K. Chanda, M. Hasan, M. Alam, R. Mondal","doi":"10.3329/jname.v18i2.51972","DOIUrl":null,"url":null,"abstract":"Investigation on fluid flow and energy distribution in a rotating coiled rectangular duct (CRD) with differentially heated horizontal walls has been analyzed numerically by using a spectral-based numerical scheme. The system is rotated around the vertical axis in the clockwise direction over the Taylor number (Tr) ranging from 0 to 2000 keeping the other parameters constant as aspect ratio Ar =3, curvature ratio BETA=0.5 the Dean number Dn = 1000 and the Prandtl number Pr = 7.0 (water). To reveal steady solution (SS) curves, we applied path continuation technique and obtained five asymmetric SS curves comprising with 2- to 8-pair cell. A bar diagram is also drawn to visualize, at a glance, longitudinal vortex generation on various curves of steady solutions. To explore unsteady behavior, time-progression analysis is performed and flow characteristics are precisely determined by obtaining phase space trajectory of the solutions. The transient flow demonstrates various stages of physically realizable solutions including chaotic, multi-periodic, periodic and steady-state; and it is found that the number of secondary vortices declines as Tr is increased. Convective heat transfer (CHT) is computed and the corresponding dependence on the flow stages is discussed accurately. Finally, a comparison has been made between the numerical computation and experimental investigations which shows a benchmark agreement. ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A computational study on flow characteristics and energy distribution in a rotating coiled rectangular duct with longitudinal vortex generation\",\"authors\":\"R. K. Chanda, M. Hasan, M. Alam, R. Mondal\",\"doi\":\"10.3329/jname.v18i2.51972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Investigation on fluid flow and energy distribution in a rotating coiled rectangular duct (CRD) with differentially heated horizontal walls has been analyzed numerically by using a spectral-based numerical scheme. The system is rotated around the vertical axis in the clockwise direction over the Taylor number (Tr) ranging from 0 to 2000 keeping the other parameters constant as aspect ratio Ar =3, curvature ratio BETA=0.5 the Dean number Dn = 1000 and the Prandtl number Pr = 7.0 (water). To reveal steady solution (SS) curves, we applied path continuation technique and obtained five asymmetric SS curves comprising with 2- to 8-pair cell. A bar diagram is also drawn to visualize, at a glance, longitudinal vortex generation on various curves of steady solutions. To explore unsteady behavior, time-progression analysis is performed and flow characteristics are precisely determined by obtaining phase space trajectory of the solutions. The transient flow demonstrates various stages of physically realizable solutions including chaotic, multi-periodic, periodic and steady-state; and it is found that the number of secondary vortices declines as Tr is increased. Convective heat transfer (CHT) is computed and the corresponding dependence on the flow stages is discussed accurately. Finally, a comparison has been made between the numerical computation and experimental investigations which shows a benchmark agreement. \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i2.51972\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i2.51972","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A computational study on flow characteristics and energy distribution in a rotating coiled rectangular duct with longitudinal vortex generation
Investigation on fluid flow and energy distribution in a rotating coiled rectangular duct (CRD) with differentially heated horizontal walls has been analyzed numerically by using a spectral-based numerical scheme. The system is rotated around the vertical axis in the clockwise direction over the Taylor number (Tr) ranging from 0 to 2000 keeping the other parameters constant as aspect ratio Ar =3, curvature ratio BETA=0.5 the Dean number Dn = 1000 and the Prandtl number Pr = 7.0 (water). To reveal steady solution (SS) curves, we applied path continuation technique and obtained five asymmetric SS curves comprising with 2- to 8-pair cell. A bar diagram is also drawn to visualize, at a glance, longitudinal vortex generation on various curves of steady solutions. To explore unsteady behavior, time-progression analysis is performed and flow characteristics are precisely determined by obtaining phase space trajectory of the solutions. The transient flow demonstrates various stages of physically realizable solutions including chaotic, multi-periodic, periodic and steady-state; and it is found that the number of secondary vortices declines as Tr is increased. Convective heat transfer (CHT) is computed and the corresponding dependence on the flow stages is discussed accurately. Finally, a comparison has been made between the numerical computation and experimental investigations which shows a benchmark agreement.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.