基于ORB- AKAZE的超声心动图图像分类特征提取

IF 0.8 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Electrical and Computer Engineering Systems Pub Date : 2023-04-26 DOI:10.32985/ijeces.14.4.3
Shamla Beevi A, R. S, Saidalavi Kalady, Jenu James Chakola
{"title":"基于ORB- AKAZE的超声心动图图像分类特征提取","authors":"Shamla Beevi A, R. S, Saidalavi Kalady, Jenu James Chakola","doi":"10.32985/ijeces.14.4.3","DOIUrl":null,"url":null,"abstract":"In computer vision, the extraction of robust features from images to construct models that automate image recognition and classification tasks is a prominent field of research. Handcrafted feature extraction and representation techniques become critical when dealing with limited hardware resource settings, low-quality images, and larger datasets. We propose two state-of-the-art handcrafted feature extraction techniques, Oriented FAST and Rotated BRIEF (ORB) and Accelerated KAZE (AKAZE), in combination with Bag of Visual Word (BOVW), to classify standard echocardiogram views using Machine learning (ML) algorithms. These novel approaches, ORB and AKAZE, which are rotation, scale, illumination, and noise invariant methods, outperform traditional methods. The despeckling algorithm Speckle Reduction Anisotropic Diffusion (SRAD), which is based on the Partial Differential Equation (PDE), was applied to echocardiogram images before feature extraction. Support Vector Machine (SVM), decision tree, and random forest algorithms correctly classified the feature vectors obtained from the ORB with accuracy rates of 96.5%, 76%, and 97.7%, respectively. Additionally, AKAZE's SVM, decision tree, and random forest algorithms outperformed state-of-the-art techniques with accuracy rates of 97.7%, 90%, and 99%, respectively.","PeriodicalId":41912,"journal":{"name":"International Journal of Electrical and Computer Engineering Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feature Extraction Based on ORB- AKAZE for Echocardiogram View Classification\",\"authors\":\"Shamla Beevi A, R. S, Saidalavi Kalady, Jenu James Chakola\",\"doi\":\"10.32985/ijeces.14.4.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In computer vision, the extraction of robust features from images to construct models that automate image recognition and classification tasks is a prominent field of research. Handcrafted feature extraction and representation techniques become critical when dealing with limited hardware resource settings, low-quality images, and larger datasets. We propose two state-of-the-art handcrafted feature extraction techniques, Oriented FAST and Rotated BRIEF (ORB) and Accelerated KAZE (AKAZE), in combination with Bag of Visual Word (BOVW), to classify standard echocardiogram views using Machine learning (ML) algorithms. These novel approaches, ORB and AKAZE, which are rotation, scale, illumination, and noise invariant methods, outperform traditional methods. The despeckling algorithm Speckle Reduction Anisotropic Diffusion (SRAD), which is based on the Partial Differential Equation (PDE), was applied to echocardiogram images before feature extraction. Support Vector Machine (SVM), decision tree, and random forest algorithms correctly classified the feature vectors obtained from the ORB with accuracy rates of 96.5%, 76%, and 97.7%, respectively. Additionally, AKAZE's SVM, decision tree, and random forest algorithms outperformed state-of-the-art techniques with accuracy rates of 97.7%, 90%, and 99%, respectively.\",\"PeriodicalId\":41912,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.14.4.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.14.4.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在计算机视觉中,从图像中提取鲁棒特征以构建自动图像识别和分类任务的模型是一个突出的研究领域。当处理有限的硬件资源设置、低质量图像和较大的数据集时,手工特征提取和表示技术变得至关重要。我们提出了两种最先进的手工特征提取技术,定向FAST和旋转BRIEF (ORB)和加速KAZE (AKAZE),结合Bag of Visual Word (BOVW),使用机器学习(ML)算法对标准超声心动图视图进行分类。这些新颖的方法ORB和AKAZE,即旋转、缩放、光照和噪声不变性方法,优于传统方法。在超声心动图图像特征提取之前,将基于偏微分方程(PDE)的散斑减少各向异性扩散(SRAD)去斑算法应用于图像去斑。支持向量机(SVM)、决策树(decision tree)和随机森林(random forest)算法对ORB得到的特征向量进行正确分类,准确率分别为96.5%、76%和97.7%。此外,AKAZE的SVM、决策树和随机森林算法分别以97.7%、90%和99%的准确率优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Extraction Based on ORB- AKAZE for Echocardiogram View Classification
In computer vision, the extraction of robust features from images to construct models that automate image recognition and classification tasks is a prominent field of research. Handcrafted feature extraction and representation techniques become critical when dealing with limited hardware resource settings, low-quality images, and larger datasets. We propose two state-of-the-art handcrafted feature extraction techniques, Oriented FAST and Rotated BRIEF (ORB) and Accelerated KAZE (AKAZE), in combination with Bag of Visual Word (BOVW), to classify standard echocardiogram views using Machine learning (ML) algorithms. These novel approaches, ORB and AKAZE, which are rotation, scale, illumination, and noise invariant methods, outperform traditional methods. The despeckling algorithm Speckle Reduction Anisotropic Diffusion (SRAD), which is based on the Partial Differential Equation (PDE), was applied to echocardiogram images before feature extraction. Support Vector Machine (SVM), decision tree, and random forest algorithms correctly classified the feature vectors obtained from the ORB with accuracy rates of 96.5%, 76%, and 97.7%, respectively. Additionally, AKAZE's SVM, decision tree, and random forest algorithms outperformed state-of-the-art techniques with accuracy rates of 97.7%, 90%, and 99%, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.80%
发文量
69
期刊介绍: The International Journal of Electrical and Computer Engineering Systems publishes original research in the form of full papers, case studies, reviews and surveys. It covers theory and application of electrical and computer engineering, synergy of computer systems and computational methods with electrical and electronic systems, as well as interdisciplinary research. Power systems Renewable electricity production Power electronics Electrical drives Industrial electronics Communication systems Advanced modulation techniques RFID devices and systems Signal and data processing Image processing Multimedia systems Microelectronics Instrumentation and measurement Control systems Robotics Modeling and simulation Modern computer architectures Computer networks Embedded systems High-performance computing Engineering education Parallel and distributed computer systems Human-computer systems Intelligent systems Multi-agent and holonic systems Real-time systems Software engineering Internet and web applications and systems Applications of computer systems in engineering and related disciplines Mathematical models of engineering systems Engineering management.
期刊最新文献
A Four Slot Dual Feed and Dual Band Reconfigurable Antenna for Fixed Satellite Service Applications Improving Scientific Literature Classification: A Parameter-Efficient Transformer-Based Approach The New ADE-TLM Algorithm for Modeling Debye Medium Multi-Head CNN-based Software Development Risk Classification FOE NET: Segmentation of Fetal in Ultrasound Images Using V-NET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1